Modelatge d'equacions estructurals de l'adopció d'eines educatives d'intel·ligència artificial per part de professors de ciència, tecnologia i matemàtiques de Nigèria

Autors/ores

DOI:

https://doi.org/10.1344/der.2025.46.51-64

Paraules clau:

Modelatge d'equacions estructurals, professors nigerians, ciència, tecnologia, adopció, eines educatives d'intel·ligència artificial

Resum

Els avenços recents en intel·ligència artificial (IA) han despertat interès en el creixement i el desenvolupament d'eines educatives d'IA (EAIT). L'adopció d'EAIT per part dels docents a les aules ha ajudat a donar forma a les decisions d'instrucció que prenen en un intent de promoure de manera intel·ligent i activa l'aprenentatge significatiu de les àrees de contingut dels estudiants. No obstant això, els professors de ciència, tecnologia i matemàtiques (CTM) a Nigèria poques vegades adopten i incorporen EAIT en el discurs pedagògic de les seves aules, i les seves percepcions sobre els EAIT poques vegades s'avaluen. A aquest efecte, aquest estudi va identificar factors humans en l'acceptació d'EAIT per part de professors de STM a Nigèria. L'estudi va proposar un model estès d'acceptació de tecnologia (TAM) que integra la confiança percebuda dels professors de STM i les creences educatives als EAIT mitjançant un model quantitatiu d'un disseny d'enquesta descriptiu. La mostra per a l'estudi va estar composta per 345 professors de STM als sis districtes educatius de l'estat de Lagos, Nigèria. L'estudi va proposar un model estès d'acceptació de tecnologia (TAM) que integra la confiança percebuda dels professors de STM i les creences educatives als EAIT mitjançant un model quantitatiu d'un disseny d'enquesta descriptiu. La mostra per a l'estudi va estar composta per 345 professors de STM als sis districtes educatius de l'estat de Lagos, Nigèria. Es va fer servir un instrument vàlid i fiable etiquetatge com a qüestionari d'adopció d'eines educatives d'intel·ligència artificial (AEAITQ, α = 0,87) per recopilar dades de l'enquesta que es van analitzar mitjançant models d'equacions estructurals. Els resultats de l‟estudi van mostrar que els professors de STM amb creences constructivistes tenien la tendència a adoptar i incorporar EAIT en les seves decisions d‟instrucció que els seus homòlegs amb creences tradicionals. Les creences educatives tradicionals (TIB) van tenir una influència negativa en la confiança percebuda (PT), la facilitat d'ús percebuda (PEOU) i la utilitat percebuda (PU). A més, PT, PEOU i PU van ser factors importants que van predir l'adopció d'EAIT per part dels professors de STM. Tot i això, PEOU va ser el factor més fort que va predir l'adopció d'EAIT per part dels professors de STM en el discurs pedagògic. Es van debatre conclusions importants sobre el creixement i l'adopció de les EAIT per part dels principals interessats en l'ensenyament de les ciències, la tecnologia i les matemàtiques.

Biografies de l'autor/a

Adeneye Olarewaju Awofala, University of Lagos

Department of Science and Technology Education & Senior Lecturer

 

Mike Boni Bazza, Veritas University

History and International Relations & Senior Lecturer

Omolabake Temilade Ojo, University of Lagos

SCIENCE EDUCATION & SENIOR LECTURER

Adenike J. Oladipo, University of Lagos

EDUCATION & SENIOR LECTURER

Oladiran S. Olabiyi, University of Lagos

TECHNOLOGY AND VOCATIONAL EDUCATION & ASSOCIATE PROFESSOR

Abayomi A. Arigbabu, Tai Solarin University of Education

MATHEMATICS & PROFESSOR

Referències

Akar, S. G. M. (2019). Does it matter being innovative: Teachers’ technology acceptance. Education and Information Technologies, 24(6), 3415–3432. https://doi.org/10.1007/s10639-019-09933-z.

Alexandrakis, D., Chorianopoulos, K., & Tselios, N. (2020). Older adults and web 2.0 storytelling technologies: Probing the technology acceptance model through an age-related perspective. International Journal of Human–Computer Interaction, 36(17), 1623–1635. https://doi.org/10.1080/10447318.2020.1768673

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. https://doi.org/10.1037/0033-2909.103.3.411

Arpaci, I. (2016). Understanding and predicting students’ intention to use mobile cloud storage services. Computers in Human Behavior, 58, 150–157. https://doi.org/10.1016/j.chb.2015.12.067.

Asan, O., Bayrak, A. E., & Choudhury, A. (2020). Artificial intelligence and human trust in healthcare: Focus on clinicians. Journal of Medical Internet Research, 22(6), e15154. https://doi.org/10.2196/15154

Awofala, A. O. & Oladipo, A. J. (2023). A simulation study of preservice STM teachers’ technostress as related to supposed utility, attitudes towards portable technology and continuance intents to use portable technology. Digital Education Review, 44, 23-29.

Awofala, A. O. A. & Ojaleye, O. (2018). An exploration of pre-service teachers’ educational values of mathematics in relation to gender and attitudes toward mathematics in Nigeria. Journal of Pedagogical Research, 2(1), 1-15.

Awofala, A. O. A., Lawani, A. O. & Oraegbunam, C. O. (2019). An assessment of the psychometric properties of the conceptions of teaching and learning questionnaire by pre-service mathematics teachers in south-west, Nigeria. International Journal of Pedagogy and Teacher Education, 3(2), 89-102.

Awofala, A. O. A., Oladipo, A. J., Akinoso, S. O., Arigbabu, A. A., & Fatade, A. O. (2022). An assessment of google classroom reception and usage among pre-service science, technology and mathematics teachers in south-west Nigeria. Jurnal Pendidikan Progresif, 12(2), 796-805.

Awofala, A. O., & Sopekan, O. S. (2020). Early-years future teachers’ mathematical beliefs as determinants of performance in primary mathematics. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(1), 54-68.

Awofala, A. O., Lawani, A. O., & Oraegbunam, C. O. (2020). A factor analytic structure of the conceptions of mathematics scale among pre-service mathematics teachers in south-west Nigeria. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(1), 94-104.

Bitkina, O. V., Jeong, H., Lee, B. C., Park, J., Park, J., & Kim, H. K. (2020). Perceived trust in artificial intelligence technologies: A preliminary study. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(4), 282–290. https://doi.org/10.1002/hfm.20839

Chan, K.-W., & Elliott, R. G. (2004). Relational analysis of personal epistemology and conceptions about teaching and learning. Teaching and Teacher Education, 20(8), 817–831. https://doi.org/10.1016/j.tate.2004.09.002

Chiu, T. K. F., & Churchill, D. (2016). Adoption of mobile devices in teaching: Changes in teacher beliefs, attitudes, and anxiety. Interactive Learning Environments, 24(2), 317–327. https://doi.org/10.1080/10494820.2015.1113709

Choi, J. K., & Ji, Y. G. (2015). Investigating the importance of trust on adopting an autonomous vehicle. International Journal of Human-Computer Interaction, 31(10), 692–702. https://doi.org/10.1080/10447318.2015.1070549

Choi, S., Jang, Y., & Kim, H. (2023). Influence of Pedagogical Beliefs and Perceived Trust on Teachers’ Acceptance of Educational Artificial Intelligence Tools. International Journal of Human–Computer Interaction, 39(4), 910-922. DOI: 10.1080/10447318.2022.2049145

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). Teacher beliefs and technology integration practices: A critical relationship. Computers & Education, 59(2), 423–435. https://doi.org/10.1016/j.compedu.2012.02.001

Estriegana, R., Medina-Merodio, J. A., & Barchino, R. (2019). Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Computers & Education, 135, 1–14. https://doi.org/10.1016/j.compedu.2019.02.010

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382–388. https://doi.org/10.1177/002224378101800313

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Gebhardt, E. (2014). Preparing for life in a digital age: The IEA International Computer and Information Literacy Study international report. Springer Nature.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly: Management Information Systems, 27(1), 51–90. https://doi.org/10.2307/30036519

Gil-Flores, J., Rodríguez-Santero, J., & Torres-Gordillo, J. J. (2017). Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Computers in Human Behavior, 68, 441–449. https://doi.org/10.1016/j.chb.2016.11.057

Girish, V. G., Kim, M. Y., Sharma, I., & Lee, C. K. (2021). Examining the structural relationships among e-learning interactivity, uncertainty avoidance, and perceived risks of COVID-19: Applying extended technology acceptance model. International Journal of Human–Computer Interaction, 1–11. https://doi.org/10.1080/10447318.2021.1970430

Guilherme, A. (2019). AI and education: The importance of teacher and student relations. AI & Society, 34(1), 47–54. https://doi.org/10.1007/s00146-017-0693-8

Gurer, M. D., & Akkaya, R. (2021). The influence of pedagogical beliefs on technology acceptance: A structural equation modeling study of pre-service mathematics teachers. Journal of Mathematics Teacher Education, 1–17. https://doi.org/10.1007/s10857-021-09504-5

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.

Holstein, K., McLaren, B. M., & Aleven, V. (2018). Student Learning Benefits of a Mixed-Reality Teacher Awareness Tool in AI-Enhanced Classrooms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10947 LNAI, 154–168. https://doi.org/10.1007/978-3-319-93843-1_12

Hwang, Y., & Kim, D. J. (2007). Customer self-service systems: The effects of perceived web quality with service contents on enjoyment, anxiety, and e-trust. Decision Support Systems, 43(3), 746–760. https://doi.org/10.1016/j.dss.2006.12.008

Jeon, J. (2022). Exploring AI chatbot affordances in the EFL classroom: Young learners’ experiences and perspectives. Computer Assisted Language Learning, 1–26. https://doi.org/10.1080/09588221.2021.2021241

Johal, W., Castellano, G., Tanaka, F., & Okita, S. (2018). Robots for learning. International Journal of Social Robotics, 10(3), 293–294. https://doi.org/10.1007/s12369-018-0481-8

Kim, C. M., Kim, M. K., Lee, C. J., Spector, J. M., & DeMeester, K. (2013). Teacher beliefs and technology integration. Teaching and Teacher Education, 29(1), 76–85. https://doi.org/10.1016/j.tate.2012.08.005

Kim, J., Merrill, K., Xu, K., & Sellnow, D. D. (2020). My teacher is a machine: Understanding students’ perceptions of AI teaching assistants in online education. International Journal of Human–Computer Interaction, 36(20), 1902–1911. https://doi.org/10.1080/10447318.2020.1801227

Kline, R. B. (2015). TXTBK Principles and practices of structural equation modeling Ed. 4 ***. In Methodology in the social sciences.

Lano-Maduagu, A. T. Awofala, A. O. A., & Arigbabu, A. A. (2022). Assessment of psychometric properties of teachers’ sense of efficacy beliefs by pre-service home economics teachers in southwest, Nigeria. Nigerian Online Journal of Educational Sciences and Technology, 4 (2), 89-99.

Liu, H., Lin, C. H., & Zhang, D. (2017). Pedagogical beliefs and attitudes toward information and communication technology: A survey of teachers of English as a foreign language in China. Computer Assisted Language Learning, 30(8), 745–765. https://doi.org/10.1080/09588221.2017.1347572

Mercader, C., & Gairín, J. (2020). University teachers’ perception of barriers to the use of digital technologies: The importance of the academic discipline. International Journal of Educational Technology in Higher Education, 17(1), 1–14. https://doi.org/10.1186/s41239-020-0182-x

Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56–73. https://doi.org/10.1016/j.compedu.2017.02.005

Nja, C. O., Idiege, K. J., Uwe, U. E. et al. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of the African science teachers. Smart Learning Environment, 10, 42. https://doi.org/10.1186/s40561-023-00261-x.

Nye, B. D. (2014). Barriers to ITS Adoption: A systematic mapping study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8474 LNCS, 583–590. https://doi.org/10.1007/978-3-319-07221-0_74

Pal, D., & Patra, S. (2021). University students’ perception of video-based learning in times of COVID-19: A TAM/TTF perspective. International Journal of Human–Computer Interaction, 37(10), 903–921. https://doi.org/10.1080/10447318.2020.1848164

Pawar, U., O’Shea, D., Rea, S., & O’Reilly, R. (2020). Explainable AI in Healthcare. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment, Cyber SA 2020. https://doi.org/10.1109/CyberSA49311.2020.9139655

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. Advances in Neural Information Processing Systems, 2015-Janua, 505–513.

Qin, F., Li, K., & Yan, J. (2020). Understanding user trust in artificial intelligence-based educational systems: Evidence from China. British Journal of Educational Technology, 51(5), 1693–1710. https://doi.org/10.1111/bjet.12994

Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended Technology Acceptance Model (TAM). Computers & Education, 145, 103732. https://doi.org/10.1016/j.compedu.2019.103732

Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5

Riestra-González, M., Paule-Ruíz, M. d P., & Ortin, F. (2021). Massive LMS log data analysis for the early prediction of course-agnostic student performance. Computers & Education, 163, 104108. https://doi.org/10.1016/j.compedu.2020.104108

Sagnier, C., Loup-Escande, E., Lourdeaux, D., Thouvenin, I., & Valléry, G. (2020). User acceptance of virtual reality: An extended technology acceptance model. International Journal of Human–Computer Interaction, 36(11), 993–1007. https://doi.org/10.1080/10447318.2019.1708612

Sánchez-Prieto, J. C., Cruz-Benito, J., Therón, R., & García-Pẽalvo, F. J. (2019). How to measure teachers’ acceptance of AI-driven assessment in e-learning: A TAM-based Proposal. ACM International Conference Proceeding Series, 181–186. https://doi.org/10.1145/3362789.3362918

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128(0317), 13–35. https://doi.org/10.1016/j.compedu.2018.09.009

Shin, D. (2021). The effects of explain ability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47, 101324. https://doi.org/10.1016/j.tele.2019.101324

Song, P., & Wang, X. (2020). A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pacific Education Review, 21(3), 473–486. https://doi.org/10.1007/s12564-020-09640-2

Sopekan, O. S. & Awofala, A. O. A. (2019). Mathematics anxiety and mathematics beliefs as correlates of early childhood pre-service teachers’ numeracy skills. Pedacta, 9(2), 13-24.

Tondeur, J., van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers’ pedagogical beliefs and technology use in education: A systematic review of qualitative evidence. Educational Technology Research and Development, 65(3), 555–575. https://doi.org/10.1007/s11423-016-9481-2

Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi-module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9–22). Springer.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A Technology Acceptance Model (TAM) perspective. Information & Management, 51(2), 249–259. https://doi.org/10.1016/j.im.2013.12.003

Wei, Y., Yang, Q., Chen, J., & Hu, J. (2018). The exploration of a machine learning approach for the assessment of learning styles changes. Mechatronic Systems and Control, 46(3), 121–126. https://doi.org/10.2316/journal.201.2018.3.201-2979

Yin, M., Vaughan, J. W., & Wallach, H. (2019). Understanding the effect of accuracy on trust in machine learning models [Paper presentation]. Conference on Human Factors in Computing Systems – Proceedings. https://doi.org/10.1145/3290605.3300509

Zhang, Y., Vera Liao, Q., & Bellamy, R. K. E. (2020). Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making [Paper presentation]. FAT* 2020 – Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 295–305. https://doi.org/10.1145/3351095.3372852.

Descàrregues

Publicades

2025-02-03

Número

Secció

Artículos revisados por pares