Cambios en el patrón de los usos digitales por el Covid-19. Aplicación del Learning Analytics a un estudio de caso entre estudiantes universitarios.
DOI:
https://doi.org/10.1344/der.2021.39.192-212Palabras clave:
Registros digitales, brecha digital, COVID-19, analítica del aprendizaje.Resumen
La situación de excepcionalidad generada por la pandemia mundial COVD-19 ha obligado al uso masivo de herramientas digitales en todos los niveles educativos, evidenciando tanto desajustes en la carga docente para docentes y estudiantes en su adaptación, como la necesidad de observar con más detalle el proceso de aprendizaje que siguen los estudiantes. Este trabajo realiza una primera exploración de los cambios en los usos digitales de los estudiantes al pasar de la enseñanza presencial con apoyo del campus virtual a la online, según los registros o huellas que quedan al acceder a recursos virtuales. El estudio de caso se contextualiza en la asignatura de ELIMINADO PARA REVISION del segundo cuatrimestre del curso 2020, y describe tipologías y patrones de usos diferenciados antes y después de la declaración del estado de alarma nacional, con un efecto diferenciado, siendo los estudiantes del cuartil Q1 de la distribución quienes más reactivan su actividad digital, que ven una oportunidad de reengancharse en la docencia online, elementos que sirven de guía para una futura eventualidad.
Citas
Baker, R.S., Inventado, P.S. (2014). Educational data mining and learning analytics. In Learning Analytics; Springer: Berlin, Germany, pp. 61–75.
Banihashem S.K., Aliabadi K., Ardakani S. P., Ahmadabadi M.N. y Delavar A. (2019) Investigation on the Role of Learning Theory in Learning Analytics. Interdisciplinary Journal of Virtual Learn Medical Sciences. 10(3):1-14. DOI: 10.30476/ijvlms.2019.84294.1001
Banihashem S.K., Aliabadi K., Ardakani S.P., Delaver A., Ahmadabadi M.N. (2018) Learning analytics: A critical literature review. Interdisciplinary Journal of Virtual Learning in Medical Sciences. 2018; 9(2). https://dx.doi.org/10.5812/ijvlms.63024
Bates, A.W. (T) (2015). Teaching in a Digital Age: Guidelines for designing teaching and learning for a digital age. University of British Columbia. https://opentextbc.ca/teachinginadigitalage/
Berners-Lee, T., Hendler, J., y Lassila, O. (2001). The semantic web, Scientific American 284 (5): 28–37.
Buckingham S. y Ferguson, R. (2012). Social Learning Analytics. Educational Technology & Society, 15 (3), 3-26. ISSN: 1436-4522. http://www.ifets.info/journals/15_3/2.pdf.
Campbell, J. P. (2007). Utilizing Student Data within the Course Management System to Determine Undergraduate Student Academic Success: An Exploratory Study, PhD, Purdue University.
Recuperado de https://docs.lib.purdue.edu/dissertations/AAI3287222/
Campbell, J. P., DeBlois, P. B. y Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42(4), 40.
Chick, R.C., Clifton, G.T., Peace, K.M., Propper, B.W., Hale D.F., Alseidi, A.A., y Vreeland, T.J. (2020) .Using Technology to Maintain the Education of Residents During the COVID-19 Pandemic, Journal of Surgical Education, Volume 77, Issue 4, pp.729-732, https://doi.org/10.1016/j.jsurg.2020.03.018
Cocea, M. y Weibelzahl, S. (2007). Cross-system validation of engagement prediction from log files. Creating new learning experiences on a global scale. Springer Berlin Heidelberg, 14-25.
https://link.springer.com/chapter/10.1007/978-3-540-75195-3_2
Davis, K. (2012). Ethics of Big Data: Balancing Risk and Innovation. Ed. O'Reilly Media, Inc., USA, United States.
Drachsler, H. y Greller, W. (2016). Privacy and Analytics – it's a DELICATE issue. A Checklist to establish trusted Learning Analytics. 6th Learning Analytics and Knowledge Conference 2016, April 25–29, 2016, Edinburgh, UK.
Durall, E., y Gros, B. (2014). Learning analytics as a metacognitive tool. In Proceedings of 6th International Conference on Computer Supported Education Vol 1: CSEDU 380-384. https://www.scitepress.org/Link.aspx?doi=10.5220/0004933203800384
Ferguson, R., Brasher A., Clow, D. y otros (2016). Research Evidence on the Use of Learning Analytics - Implications for Education Policy. Vuorikari y Castaño Muñoz (Eds.). Joint Research Centre Science for Policy Report; https://doi.org/10.2791/955210
Fernández Enguita, M. (2020). Una pandemia imprevisible ha traído la brecha previsible. Recuperado de https:// bit.ly/2VT3kzU
García-Peñalvo, F. J. (2020). El sistema universitario ante la COVID-19: Corto, medio y largo plazo. En: Universidad. Disponible en: https://bit.ly/2YPUeXU.
García-Peñalvo, F. J., Corell, A., Abella-García, V., y Grande, M. (2020). La evaluación online en la educación superior en tiempos de la COVID-19. Education in the Knowledge Society, 21, 12. https://doi.org/10.14201/eks.23086
Gašević D., Dawson S. y Rogers T. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education. Jan 1; 28:68-84. https://doi.org/10.1016/j.iheduc.2015.10.002
Gašević D., Dawson S., Siemens G.(2015). Let’s not forget: Learning analytics are about learning. TechTrends. 2015 Jan 1;59(1):64-71. https://doi.org/10.1007/s11528-014-0822-x
Gros, B. (2016). The design of smart educational environments. Smart Learning Environments, 3(15), 1-11. https://doi.org/10.1186/s40561-016-0039-x
Harrison, C. y Killion, J. (2007). Ten roles for teacher leaders. Educational Leadership, 65(1) (September) 74-77.
Herodotou, C.; Rienties, B.; Verdin, B.; Boroowa, A. (2019). Predictive learning analytics ‘at scale’: Towards guidelines to successful implementation in Higher Education based on the case of the Open University UK. Journal of learning Analytics, 6, pp. 85-95. https://doi.org/10.18608/jla.2019.61.5
Hodges, C.,Moore, S.,Lockee, B.,Trust, T. y Bond, A. (2020). The difference between emergency remote teaching and online learning. Educause Review. Recuperado de https://bit.ly/3b0Nzx7
Iglesia, M. C. (2019). Learning Analytics para una visión tipificada del aprendizaje de los estudiantes. Un estudio de caso. Revista Iberoamericana de Educación, 80(1), 55-87. https://doi.org/10.35362/rie8013444
Iglesia, M. C. (2020). Analítica de los usos digitales y rendimiento académico. Un estudio de caso con estudiantes universitarios. REIRE, Revista d'Innovació i Recerca en Educació, Vol. 13, Núm. 2 (2020). https://doi.org/10.1344/reire2020.13.229267
Kay, D., Kom, N. and Oppenheim C. (2013). Legal, Risk and Ethical Aspects of Analytics in Higher Education. Analytics Series. Accessed January 3,
Knight S., Shum S.B., Littleton K. (2014). Epistemology, assessment, pedagogy:where learning meets analytics in the middle space. Journal of Learning Analytics. 2014 Aug 7;1(2): 23-47. https://doi.org/10.18608/jla.2014.12.3
Li, Q.; Baker, R.; Warschauer, M. (2020). Using clickstream data to measure, understand, and support self-regulated learning in online courses. Internet Hight Education, 100727.
Liz-Domínguez, M., Caeiro-Rodríguez, M., Llamas-Nistal, M., Mikic-Fonte, F.A. (2019). Systematic Literature Review of Predictive Analysis Tools in Higher Education. Applied. Science. 9, 5569.
Lodge, J. M., y Corrin, L. (2017). What data and analytics can and do say about effective learning. Npj Science of Learning, 2(1). https://doi.org/10.1038/s41539-017-0006-5
Long, Ph. y Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46, 5, 30-40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
Mazza, R. y Botturi, L. (2007). Monitoring an Online Course with the GISMO Tool: A Case Study. Journal of Interactive Learning Research (2007), 18 (2), 251-265.
Mazza R. y Milani, C. (2004). GISMO: a Graphical Interactive Student Monitoring Tool for Course Management Systems. T.E.L.’04 Technology Enhanced Learning ’04 International Conference. Milan, 18-19 November 2004.
OECD (2019). Benchmarking Higher Education System Performance; Paris, France, 2019; p. 644, https://doi.org/10.1787/be5514d7-en.
Pardo, A. (2018). A feedback model for data-rich learning experiences. Assessment & Evaluation in Higher Education, 43(3), 428–438. https://doi.org/10.1080/02602938.2017.1356905
Pardo, A. y Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450. https://doi.org/10.1111/bjet.12152
Picciano, A. (2012). The Evolution of Big Data and Learning Analytics in American Higher Education. Journal of Asynchronous Learning Networks, 16(3), 9-20.
Picciano, A. G. (2014) Big Data and Learning Analytics in Blended Learning Environments: Benefits and Concerns. International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7, pp 35-43. http://doi.org/10.9781/ijimai.2014.275
Prensky, M. (2013). Enseñar a nativos digitales (1a. ed). México: SM Ediciones.
Ramos, C. y Yudko, E. (2008). “Hits” (not “Discussion Posts”) predict student success in online courses: A doublé cross-validation study. Computers & Education, 50(4):1174-1182.
https://doi.org/10.1016/j.compedu.2006.11.003
Romero, C., Ventura, S. y Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016
Sanger, D.E. y Perlroth, N. (2014). Internet Giants Erect Barriers to Spy Agencies. New York Times. (June 6, 2014)
https://www.nytimes.com/2014/06/07/technology/internet-giants-erect-barriers-to-spy-agencies.html
Sampson, D. (2017). Teaching and learning analytics to support teacher inquiry. In 2017 IEEE Global Engineering Education Conference (EDUCON 2017), Apr 25, 2017, Athens, Greece.
Siemens G. (2013). Learning Analytics: The Emergence of a Discipline, American Behavioral Scientist. Vol 57(10), p.1380-1400, SAGE Publications.
http://journals.sagepub.com/doi/abs/10.1177/0002764213498851?journalCode=absb
Slade, S. y Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57 (10), 1510-1529. https://doi.org/10.1177%2F0002764213479366
Stewart, C. (2017). Learning Analytics: Shifting from theory to practice. Journal on Empowering Teaching Excellence, 1(1), 95-105. https://doi.org/10.15142/T3G63W
Tempelaar, D. (2020) Supporting the less-adaptive student: the role of learning analytics, formative assessment and blended learning, Assessment & Evaluation in Higher Education, 45:4, 579-593, https://doi.org/10.1080/02602938.2019.1677855
Xing, W., Guo, R., Petakovic, E., y Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168–181. https://doi.org/10.1016/j.chb.2014.09.034
Yukselturk, E. Ozekes, S. y Turel, Y. K. (2014) Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program. European Journal of Open, Distance and E‐Learning, 17, 1, pp. 118-133. https://doi.org/10.2478/eurodl-2014-0008
Descargas
Publicado
Número
Sección
Licencia
El/la autor/a que publica en esta revista está de acuerdo con los términos siguientes:
- El/la autor/a conserva los derechos de autoría y otorga a la revista el derecho de primera publicación de la obra
- Los textos publicados en Digital Education Review están bajo una licencia Reconocimiento-No comercial-Sin obras derivadas 3.0 España de Creative Commons.
- Para poder mencionar los trabajos se debe citar la fuente (DER) y el autor del texto.
- Digital Education Review (DER) no acepta ninguna responsabilidad por los puntos de vista y las declaraciones hechas por los autores en su trabajo.