Genética y aprendizaje: Cómo influyen los genes en el logro educativo

Autores/as

  • David Bueno Universidad de Barcelona

DOI:

https://doi.org/10.1344/joned.v1i1.31788

Palabras clave:

Genética, Epigenética, Heredabilidad, Ambiente, Aprendizaje, Adaptación

Resumen

El cerebro es el órgano del pensamiento, que se define como la facultad de concebir, juzgar o inferir, o considerar algo, una opinión o un conjunto de ideas sobre un tema determinado, e incluye los procesos de aprendizaje. Las conexiones neuronales que generan y dan soporte a las funciones mentales se forman en el transcurso de la vida, lo que permite el aprendizaje de nuevos conceptos y habilidades. Tanto la formación y el funcionamiento del cerebro, así como la plasticidad neuronal, están influenciados por la actividad de un conjunto de genes y también por modificaciones epigenéticas, que contribuyen a la regulación de la expresión génica adaptándola a las condiciones ambientales. En esta revisión, dirigida especialmente a profesionales de la educación, se analizan las aportaciones genéticas y epigenéticas a aspectos mentales relacionados con los procesos de aprendizaje, en términos de heredabilidad. Argumentaré que, a pesar de que la mayoría, si no todos los aspectos relacionados con el aprendizaje tienen un trasfondo genético claro, los procesos educativos permiten incrementar o disminuir las capacidades innatas de cada persona. Hablaré, por tanto, de la importancia de la educación en el contexto de la heredabilidad de los procesos vinculados al aprendizaje. La conclusión será que, aunque en la mayoría de estos procesos cerebrales la heredabilidad es relativamente alta, las prácticas educativas constituyen un elemento clave para el desarrollo de los estudiantes, dado que permiten potenciar, o alternativamente disminuir, todas las capacidades cognitivas. Por lo tanto, uno de los objetivos principales de la educación en un mundo cambiante e incierto debería ser formar personas adaptables y versátiles que puedan y quieran aprovechar al máximo sus capacidades. Los conocimientos derivados de la genética y la epigenética, y también de la neurociencia, deberían utilizarse para mejorar la comprensión que tenemos los profesionales de la educación sobre los orígenes biológicos de las diferencias en las capacidades cognitivas, lo cual debería permitir desarrollar prácticas educativas más respetuosas y flexibles para alcanzar el objetivo mencionado, formar personas adaptables y versátiles que puedan y quieran aprovechar al máximo sus capacidades en un entorno cambiante e incierto.

 

Biografía del autor/a

David Bueno, Universidad de Barcelona

Sección de Genètica Biomédica, Evolutiva y del Desarrollo.ç

Cátedra de Neuroeducación UB-EDU1ST

Citas

1. Brown M, Keynes R, Lumsden A. (2001) The Developing Brain. Oxford: Oxford University Press.

2. Salzberg SL (2018) Open questions: How many genes do we have? BMC Biology 16:94. doi.org/10.1186/s12915-018-0564-x

3. Davies G, Lam M, y col. (2018) Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9(1), 2098.

4. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, y col. (2018) Uncovering the complex genetics of human temperament. Mol. Psychiatry. doi: 10.1038/s41380-018-0264-5.

5. Karlsgodt KH, Bachman P, Winkler AM, Bearden CE, Glahn DC (2011) Genetic influence on the working memory circuitry: behavior, structure, function and extensions to illness. Behav. Brain Res. 225(2), 610-622.

6. Enoch MA, Waheed JF, Harris CR, Albaugh B, Goldman D. (2009) COMT Val158Met and cognition: main effects and interaction with educational attainment. Genes Brain Behav. 8, 36-42.

7. Walter NT, Markett SA, Montag C, Reuter M. (2011) A genetic contribution to cooperation: dopamine-relevant genes are associated with social facilitation. Soc. Neurosci. 6(3), 289-301.

8. Plomin R, von Stumm S. (2018) The new genetics of intelligence. Nat. Rev. Genet. 19, 148-159.

9. Plomin R, Spinath FM. (2004) Intelligence: genetics, genes, and genomics. J. Pers. Soc. Psychol. 86(1), 112-29.

10. Posthuma D, Boomsma DI. (2000) A note on the statistical power in extended twin designs. Behav. Genet. 30(2),147-58.

11. Al Hafid N, Christodoulou J. (2015) Phenylketonuria: a review of current and future treatments. Transl. Pediatr. 4(4), 304–317.

12. Colodro-Conde L, Rijsdijk F, Tornero-Gómez MJ, Sánchez-Romera JF, Ordoñana JR. (2015) Equality in Educational Policy and the Heritability of Educational Attainment. PLoS One. 10(11), e0143796.

13. Boardman JD, Blalock CL, Button TM. (2008) Sex differences in the heritability of resilience. Twin Res. Hum. Genet. 11(1), 12-27.

14. Bouchard Jr TJ. (2004) Genetic Influence on Human Psychological Traits: A Survey. Curr. Dir. Psychol. Sci. 13(4), 148-151.

15. Shiner RL, Buss KA, McClowry SG, Putnam SP, Saudino KJ, Zentner M. (2012) What Is Temperament Now? Assessing Progress in Temperament Research on the Twenty‐Fifth Anniversary of Goldsmith et al. Child Development Perspectives. doi.org/10.1111/j.1750-8606.2012.00254.x

16. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, y col. (2018) Uncovering the complex genetics of human character. Mol. Psychiatry. doi: 10.1038/s41380-018-0263-6.

17. Larsen RJ, Buss D. (2017) Personality Psychology: Domains of Knowledge About Human Nature (6th Ed.). Boston: McGraw Hill

18. Kandler C, Riemann R, Angleitner A, Spinath FM, Borkenau P, Penke L. (2016) The nature of creativity: The roles of genetic factors, personality traits, cognitive abilities, and environmental sources. J. Pers. Soc. Psychol. 111(2), 230-249.

19. Nauta MM. (2010) The Development, Evolution, and Status of Holland’s Theory of Vocational Personalities: Reflections and Future Directions for Counseling Psychology. J. Couns. Psychol. 57(1), 11-22.

20. Zheng Y, Plomin R, von Stumm S. (2016) Heritability of intraindividual mean and variability of positive and negative affect. Psychol. Sci. 27(12), 1611-1619.

21. Wingo AP, Almli LM, Stevens JS, Jovanovic T, Wingo TS, Tharp G, y col. (2017) Genome-wide association study of positive emotion identifies a genetic variant and a role for microRNAs. Mol. Psychiatry. 22, 774-783.

22. Rimfeld K, Ayorech Z, Dale PS, Kovas Y, Plomin R. (2016) Genetics affects choice of academic subjects as well as achievement. Sci. Rep. 6, 26373. doi: 10.1038/srep26373.

23. Goldberg X, Lemos S, Fañanás L. (2014) A systematic review of the complex organization of human cognitive domains and their heritability. Psicothema. 26(1), 1-9.

24. Pokrope, A, Sikora J. (2015) Heritability, family, school and academic achievement in adolescence. Soc. Sci. Res. 53, 73-88.

25. Rimfeld K, Kovas Y, Dal, PS, Plomin R. (2016) True grit and genetics: Predicting academic achievement from personality. J. Pers. Soc. Psychol. 111(5), 780-789.

26. Xu J, Yin X, Ge H, Han Y, Pang Z, Liu B, Liu S, Friston K. (2017) Heritability of the Effective Connectivity in the Resting-State Default Mode Network. Cereb. Cortex. 27(12), 5626-5634.

27. Friedman NP, Miyake A, Young SE, Defries JC, Corley RP, Hewitt JK. (2008) Individual differences in executive functions are almost entirely genetic in origin. J. Exp. Psychol. 137(2), 201-225.

28. Newton PM. (2015) The Learning Styles Myth is Thriving in Higher Education. Front. Psychol. 6, 1908.

29. Macdonald K, Germine L, Anderson A, Christodoulou J, McGrath LM. (2017) Dispelling the Myth: Training in Education or Neuroscience Decreases but Does Not Eliminate Beliefs in Neuromyths. Front. Psychol. 8, 1314.

30. Newton PM, Miah M. (2017) Evidence-Based Higher Education - Is the Learning Styles 'Myth' Important? Front. Psychol. 8, 444.

31. Howard-Jones PA. (2014) Neuroscience and education: myths and messages. Nat. Rev. Neurosci. 15, 817-824.

32. Rohrer D, Pashler H. (2012) Learning styles: where’s the evidence? Med. Educ. 46, 634–635

33. Doll BB, Bath KG, Daw ND, Frank MJ. (2016) Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning. J. Neurosci. 36,1211-1222.

34. Sachser N, Hennessy MB, Kaiser S. (2018) The adaptive shaping of social behavioural phenotypes during adolescence. Biol. Lett. 14(11). doi: 10.1098/rsbl.2018.0536.

35. Miskolczi C, Halász J, Mikics É. (2018) Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr. Res. doi: 10.1038/s41390-018-0205-7.

36. Miranda-Dominguez O, Feczko E, Grayson DS, Walum H, Nigg JT, Fair DA. (2018) Heritability of the human connectome: A connectotyping study. Netw. Neurosci. 2(2), 175-199.

37. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron. 80(3), 624-632.

38. Allis D. (Ed) (2015) Epigenetics (2nd Ed.). New York: Cold Spring Harbor Laboratory Press.

39. Day JJ, Sweatt JD. (2010) DNA methylation and memory formation. Nat. Neurosci. 13, 1319-1323.

40. Schmauss C. (2017) The roles of class I histone deacetylases (HDACs) in memory, learning, and executive cognitive functions: A review. Neurosci. Biobehav. Rev. 83, 63-71.

41. Collins BE., Greer CB, Coleman BC, Sweatt JD. (2019) Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin. 12(1), 7. doi: 10.1186/s13072-018-0251-8.

42. Ibrahim O, Sutherland HG, Haupt LM, Griffiths LR. (2018) An emerging role for epigenetic factors in relation to executive function. Brief Funct. Genomics. 17(3), 170-180.

43. Peter CJ, Fischer LK, Kundakovic M, Garg P, Jakovcevski M, Dincer A, y col. (2016) DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition. Biol. Psychiatry. 80(10), 765-774.

44. Delvecchio G, Bellani M, Altamura AC, Brambilla P. (2016) The association between the serotonin and dopamine neurotransmitters and personality traits. Epidemiol. Psychiatr. Sci. 25(2), 109-112.

45. Kaminski J, Schlagenhauf F, Rapp M, Awasthi S, Ruggeri B, Deserno L, y col. (2018) Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability? Transl. Psychiatry. 8(1), 169. doi: 10.1038/s41398-018-0222-7.

46. McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney, MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12(3), 342-348

47. Farrell C, Doolin K, O'Leary N, Jairaj C, Roddy D, Tozzi L, y col. (2018) DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res. 265, 341-348.

48. Checknita D, Ekström TJ, Comasco E, Nilsson KW, Tiihonen J, Hodgins S. (2018) Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. J. Neural. Transm. 125(7), 1053-1064.

49. Cecil CA, Smith RG, Walton E, Mill J, McCrory EJ, Viding E. (2016) Epigenetic signatures of childhood abuse and neglect: Implications for psychiatric vulnerability. J. Psychiatr. Res. 83, 184-194.

50. Hein S, Thomas T, Yu Naumova O, Luthar SS, Grigorenko EL. (2018) Negative parenting modulates the association between mother's DNA methylation profiles and adult offspring depression. Dev. Psychobiol. doi: 10.1002/dev.21789.

51. Zabaneh D, Krapohl E, Gaspar HA, Curtis C, Lee SH, Patel H, Newhouse S, Wu HM, Simpson MA, Putallaz M, Lubinski D, Plomin R, Breen G. (2018) A genome-wide association study for extremely high intelligence. Mol. Psychiatry. 23(5), 1226-1232.

52. Fletcher JM, Marks AD, Hine DW, Coventry WL. (2014) Heritability of preferred thinking styles and a genetic link to working memory capacity. Twin Res. Hum. Genet. 17(6), 526-534.

53. Blokland GA, McMahon KL, Thompson PM, Martin NG, de Zubicaray GI, Wright MJ. (2011) Heritability of working memory brain activation. J. Neurosci. 31(30), 10882-10890.

54. Hansell NK, Halford GS, Andrews G, Shum DH, Harris, SE, Davies G, y col. (2015). Genetic basis of a cognitive complexity metric. PLoS One. 10(4), e0123886. doi: 10.1371/journal.pone.0123886.

55. Navrady LB, Zeng Y, Clarke TK, Adams MJ, Howard DM, Deary IJ, McIntosh AM. (2018) Genetic and environmental contributions to psychological resilience and coping. Wellcome Open Res. 3, 12. doi: 10.12688/wellcomeopenres.13854.1

56. Ocklenburg S, Ströckens F, Bless JJ, Hugdahl K, Westerhausen R, Manns M. (2016) Investigating heritability of laterality and cognitive control in speech perception. Brain Cogn. 109, 34-39.

57. Tuvblad C, May M, Jackson N, Raine A, Baker LA. (2017) Heritability and Longitudinal Stability of Planning and Behavioral Disinhibition Based on the Porteus Maze Test. Behav. Genet. 47(2), 164-174.

58. Hiraishi K, Shikishima C, Yamagata S, Ando J. (2015) Heritability of decisions and outcomes of public goods games. Front. Psychol. 6, 373. doi: 10.3389/fpsyg.2015.00373.

59. Kovas Y, Voronin I, Kaydalov A, Malykh SB, Dale PS, Plomin R. (2013) Literacy and numeracy are more heritable than intelligence in primary school. Psychol. Sci. 24(10), 2048-2056. ç

60. Gingras B, Honing H, Peretz I, Trainor LJ, Fisher SE. (2015) Defining the biological bases of individual differences in musicality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370(1664):20140092. doi: 10.1098/rstb.2014.0092.

61. Arden R, Trzaskowski M, Garfield V, Plomin R. (2014) Genes influence young children's human figure drawings and their association with intelligence a decade later. Psychol. Sci. 25(10), 1843-1850.

Publicado

2020-07-15