Measuring the skills of university students in the Education career using Artificial Intelligence: right brain vs left brain with structural equation models

Autors/ores

DOI:

https://doi.org/10.1344/REYD2024.30.47137

Paraules clau:

Domini Cognitiu, Educació superior, tecnología, Estils de pensament

Resum

Aquesta investigació utilitza un disseny quantitatiu explicatiu amb un enfocament de modelització d'equacions estructurals (SEM) per provar si el domini del cervell esquerre o dret afecta les habilitats dels professors de formació en l'ús de la intel·ligència artificial (IA). Els participants en aquesta investigació van ser 342 estudiants especialitzats en educació multidisciplinària (professors en formació). La distribució de les dades dels participants reflecteix variacions en aquests aspectes, que pretén oferir una imatge completa dels factors que poden influir en les habilitats dels estudiants en l'ús de la IA. Aquesta investigació posa de manifest que els estudiants amb domini del cervell esquerre mostren habilitats superiors en l'ús de la tecnologia d'IA en comparació amb els estudiants amb domini del cervell dret. Això es mostra amb el valor de càrrega del factor al camí d60 que va arribar a 0,98, cosa que indica l'elevat poder de representació dels estudiants amb domini del cervell esquerre en el domini de la IA. Aquestes troballes tenen un impacte significatiu en els enfocaments de l'educació tecnològica a les universitats. En primer lloc, aquests resultats poden afavorir el desenvolupament de currículums que facin més èmfasi en les habilitats analítiques i lògiques de tots els estudiants, així com introduir elements creatius que poden atreure l'interès dels estudiants amb domini del cervell dret. Així, els programes educatius es poden dissenyar per acomodar ambdós tipus de domini cerebral, assegurant que els estudiants rebin una formació integral i equilibrada. A més, aquestes troballes posen de manifest la necessitat que les universitats creïn entorns d'aprenentatge inclusius i de suport, especialment per a les dones que poden enfrontar-se a estereotips de gènere que dificulten la seva participació en els camps STEM.

Biografies de l'autor/a

Mohammad Archi Maulyda, Universitas Negeri Yogyakarta (Indonesia)

Professor. 

Educació Primària. Facultat d'Educació i Psicologia

 

Sugiman Sugiman, Universitas Negeri Yogyakarta (Indonèsia)

Professor i investigador

Educació Matemàtica. Facultat de Matemàtiques i Ciències Naturals

 

Wuri Wuryandani , Universitas Negeri Yogyakarta (Indonèsia)

Profesor. Educació Primària

Facultat d'Educació i Psicologia

Hidar Amaruddin, Universitas Negeri Yogyakarta (Indonèsia)

Investigador

Educació Primària. Facultat d'Educació i Psicologia

Ashar Pajarungi Anar, Universitas Negeri Yogyakarta (Indonèsia)

Investigador

Educació Primària. Facultat d'Educació i Psicologia

Referències

Abdel-Hameed, H. S., Rasheed, E. M., & Yousef, S. A. A. (2020). Assessment of Intelligence Quotient in School-Aged Children Who Are Breastfed Versus Artificial-Fed. The Egyptian Journal of Hospital Medicine, 80(2), 760–765. https://doi.org/10.21608/ejhm.2020.97057

Aburayash, H. (2021). Meta Cognition Thinking and Its Relationship to Patterns of Brain Dominance among Jordanian University Students According to Gender and Specialization Variables. International Journal of Emerging Technologies in Learning (IJET), 16(13), 4. https://doi.org/10.3991/ijet.v16i13.21999

Adams, C., Pente, P., Lemermeyer, G., & Rockwell, G. (2023). Ethical principles for artificial intelligence in K-12 education. Computers and Education: Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131

Bao, Y. (2019). Artificial Intelligence for civil engineering. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 52(5), 1–11.

Carino-Escobar, R. I., Galicia-Alvarado, M., Marrufo, O. R., Carrillo-Mora, P., & Cantillo-Negrete, J. (2020). Brain–computer interface performance analysis of monozygotic twins with discordant hand dominance: A case study. Laterality, 25(5), 513–536. https://doi.org/10.1080/1357650X.2019.1710525

Confalonieri, R., Lucchesi, F., Maffei, G., & Catuara-Solarz, S. (2022). A unified framework for managing sex and gender bias in AI models for healthcare. In Sex and Gender Bias in Technology and Artificial Intelligence (pp. 179–204). Elsevier. https://doi.org/10.1016/B978-0-12-821392-6.00004-2

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.

Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M. S., Chai, C., & Lin, Z. (2023). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, 112(1), 23–42. https://doi.org/10.1002/jee.20503

Dhanpat, N., Braine, R. De, & Geldenhuys, M. (2019). Preliminary development of the Higher Education Hindrance Demands Scale amongst academics in the South African context. SA Journal of Industrial Psychology, 45, 1–12. https://doi.org/10.4102/sajip.v45i0.1595

Drigas, A. S., & Ioannidou, R.-E. (2013). A Review on Artificial Intelligence in Special Education (pp. 385–391). https://doi.org/10.1007/978-3-642-35879-1_46

Filyushkina, V., Popov, V., Ushakov, V., Batalov, A., Tomskiy, A., Pronin, I., & Sedov, A. (2021). Influence of Dominance on Human Brain Activity During Voluntary Movement in Parkinson’s Disease (pp. 589–602). https://doi.org/10.1007/978-3-030-71637-0_68

Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. The International Journal of Information and Learning Technology, 34(2), 133–139. https://doi.org/10.1108/IJILT-09-2016-0048

Gannouni, S., Aledaily, A., Belwafi, K., & Aboalsamh, H. (2020). Adaptive Emotion Detection Using the Valence-Arousal-Dominance Model and EEG Brain Rhythmic Activity Changes in Relevant Brain Lobes. IEEE Access, 8, 67444–67455. https://doi.org/10.1109/ACCESS.2020.2986504

Garvanova*, M., & Papazova, E. (2019). Parenting Styles, Gender-Role Orientations and Romantic Beliefs and Experience In Emerging Adulthood. 188–197. https://doi.org/10.15405/epsbs.2019.01.19

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). MULTIVARIATE DATA ANALYSIS (EIGHTH EDITION). Annabel Ainscow. www.cengage.com/highered

Hall, P., & Ellis, D. (2023). A systematic review of socio-technical gender bias in AI algorithms. Online Information Review, 47(7), 1264–1279. https://doi.org/10.1108/OIR-08-2021-0452

Huang, J., Saleh, S., & Liu, Y. (2021). A Review on Artificial Intelligence in Education. Academic Journal of Interdisciplinary Studies, 10(3), 206. https://doi.org/10.36941/ajis-2021-0077

Kawakami, Y., L. Murashima, Y., Tsukimoto, M., Okada, H., Miyatake, C., Takagi, A., Ogawa, J., & Itoh, Y. (2021). The Roles of Dominance of the Nitric Oxide Fractions Nitrate and Nitrite in the Epilepsy-Prone EL Mouse Brain. Journal of Nippon Medical School, 88(3), 189–193. https://doi.org/10.1272/jnms.JNMS.2021_88-402

Kuner, R. (2021). Cellular circuits in the brain and their modulation in acute and chronic pain. Physiological Reviews, 101(1), 213–258. https://doi.org/10.1152/physrev.00040.2019

Legewie, J., & DiPrete, T. A. (2014). The High School Environment and the Gender Gap in Science and Engineering. Sociology of Education, 8(5), 231–245. https://doi.org/10.1177/0038040714547770

Li, S., Hanafiah, W., Rezai, A., & Kumar, T. (2022). Interplay Between Brain Dominance, Reading, and Speaking Skills in English Classrooms. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.798900

Lim, Z. Y., Sim, K. S., & Tan, S. C. (2021). Metric Learning Based Convolutional Neural Network for Left-Right Brain Dominance Classification. IEEE Access, 9, 120551–120566. https://doi.org/10.1109/ACCESS.2021.3107554

Lin, P.-H., Wooders, A., Wang, J. T.-Y., & Yuan, W. M. (2018). Artificial Intelligence, the Missing Piece of Online Education? IEEE Engineering Management Review, 46(3), 25–28. https://doi.org/10.1109/EMR.2018.2868068

Makhortykh, M., Urman, A., & Ulloa, R. (2021). Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines (pp. 36–50). https://doi.org/10.1007/978-3-030-78818-6_5

Marsden, N., Bhattacharyya, S., Meyer-Christodoulou, J., Martin, L., & Peine, A. (2022). Co-Design for Gender Equality in an AI-Based Virtual Assistant for Intensive Care Units. 2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association for Management of Technology (IAMOT) Joint Conference, 1–7. https://doi.org/10.1109/ICE/ITMC-IAMOT55089.2022.10033204

Merrick, C. M., Dixon, T. C., Breska, A., Lin, J., Chang, E. F., King-Stephens, D., Laxer, K. D., Weber, P. B., Carmena, J., Thomas Knight, R., & Ivry, R. B. (2022). Left hemisphere dominance for bilateral kinematic encoding in the human brain. ELife, 11. https://doi.org/10.7554/eLife.69977

Ofem Usani Joseph, Iyam Mary Arikpo, Ovat Sylvia Victor, Nwogwugwu Chidirim, Anake Paulina Mbua, Udeh Maryrose Ify, & Otu Bernard Diwa. (2024). Artificial Intelligence (AI) in academic research. A multi-group analysis of students’ awareness and perceptions using gender and programme type. Journal of Applied Learning & Teaching, 7(1). https://doi.org/10.37074/jalt.2024.7.1.9

Piaw, C. Y. (2011). Establishing a brain styles test: The YBRAINS test. Procedia - Social and Behavioral Sciences, 15, 4019–4027. https://doi.org/10.1016/j.sbspro.2011.04.407

Polák, P., Ka, R. D. Č., & Anský, J. Ž. I. T. Ň. (2014). Capability assessment of measuring equipment using statistic method. Management Systems in Production Engineering, 4(16), 184–186. https://doi.org/10.12914/MSPE

Rahmatian, R., & Zarekar, F. (2016). Inductive/Deductive Learning by Considering the Role of Gender—A Case Study of Iranian French-Learners. International Education Studies, 9(12), 254. https://doi.org/10.5539/ies.v9n12p254

Ramsay, J. O., & Silverman, B. W. (2015). Functional Data Analysis. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition. Harvard University. https://doi.org/10.1016/B978-0-08-097086-8.42046-5

Schulte Steinberg, A. L., & Hohenberger, C. (2023). Can AI close the gender gap in the job market? Individuals’ preferences for AI evaluations. Computers in Human Behavior Reports, 10, 100287. https://doi.org/10.1016/j.chbr.2023.100287

Shen, Z. (2023). Teaching Artificial Intelligence to “Rural Children”: The “Qingyun Primary School’s Practice” of Artificial Intelligence in Education in Rural Primary Schools (pp. 57–61). https://doi.org/10.1007/978-981-99-6097-2_8

Steffen, M. A., & Rehan, S. M. (2020). Genetic signatures of dominance hierarchies reveal conserved cis‐regulatory and brain gene expression underlying aggression in a facultatively social bee. Genes, Brain and Behavior, 19(1). https://doi.org/10.1111/gbb.12597

Suh, W., & Ahn, S. (2022). Development and Validation of a Scale Measuring Student Attitudes Toward Artificial Intelligence. SAGE Open, 12(2). https://doi.org/10.1177/21582440221100463

Suresh, V. C., Poornima, C., Anjana, K., & Debata, I. (2020). Assessment of brain dominance and its correlation with academic achievement among medical students: A cross-sectional study. Archives of Mental Health, 21(1), 25. https://doi.org/10.4103/AMH.AMH_3_20

Tandel, G. S. (2020). Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine, 122. https://doi.org/10.1016/j.compbiomed.2020.103804

Tison, E. B., Bateman, T., & Culver, S. M. (2011). Examination of the gender–student engagement relationship at one university. Assessment & Evaluation in Higher Education, 36(1), 27–49. https://doi.org/10.1080/02602930903197875

Van Heerden, A. (Hennie), Burger, M., & van Eck, E. (2020). Brain Dominance and Learning Style Preference of Quantity Surveying Students in South Africa and Malaysia (pp. 121–127). https://doi.org/10.1007/978-3-030-51626-0_14

Wang, L. (2020). Mediation Relationships Among Gender, Spatial Ability, Math Anxiety, and Math Achievement. Educational Psychology Review, 32(1), 1–15. https://doi.org/10.1007/s10648-019-09487-z

Wang, X.-D., Xu, H., Yuan, Z., Luo, H., Wang, M., Li, H.-W., & Chen, L. (2021). Brain Hemispheres Swap Dominance for Processing Semantically Meaningful Pitch. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.621677

Wei, Y., Liang, X., Guo, X., Wang, X., Qi, Y., Ali, R., Wu, M., Qian, R., Wang, M., Qiu, B., Li, H., Fu, X., & Chen, L. (2022). Brain hemispheres with right temporal lobe damage swap dominance in early auditory processing of lexical tones. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.909796

Zellou, G., Cohn, M., & Ferenc Segedin, B. (2021). Age- and Gender-Related Differences in Speech Alignment Toward Humans and Voice-AI. Frontiers in Communication, 5. https://doi.org/10.3389/fcomm.2020.600361

Descàrregues

Publicades

2024-10-02 — Actualitzat el 2024-10-06

Com citar

Archi Maulyda, M. ., Sugiman, S. ., Wuryandani , W. ., Amaruddin, H., & Pajarungi Anar, A. . (2024). Measuring the skills of university students in the Education career using Artificial Intelligence: right brain vs left brain with structural equation models. Revista d’Educació I Dret, (30). https://doi.org/10.1344/REYD2024.30.47137