Measuring the skills of university students in the Education career using Artificial Intelligence: right brain vs left brain with structural equation models
DOI:
https://doi.org/10.1344/REYD2024.30.47137Palabras clave:
Dominancia Cognitiva, Educación más alta, Tecnología, Estilos de pensamientoResumen
Esta investigación utiliza un diseño cuantitativo explicativo con un enfoque de modelado de ecuaciones estructurales (SEM) para probar si el dominio del cerebro izquierdo o derecho afecta las habilidades de los futuros docentes en el uso de la inteligencia artificial (IA). Participaron de esta investigación 342 estudiantes de la carrera de educación multidisciplinaria (profesores en formación). La distribución de los datos de los participantes refleja variaciones en estos aspectos, cuyo objetivo es proporcionar una imagen completa de los factores que tienen el potencial de influir en las habilidades de los estudiantes en el uso de la IA. Esta investigación destaca que los estudiantes con dominio del hemisferio izquierdo del cerebro muestran habilidades superiores en el uso de la tecnología de inteligencia artificial en comparación con los estudiantes con dominio del hemisferio derecho. Esto se muestra en el valor de carga del factor en el camino d60 que alcanzó 0,98, lo que indica el alto poder de representación de los estudiantes con dominancia del cerebro izquierdo en el dominio de la IA. Estos hallazgos tienen un impacto significativo en los enfoques de la educación tecnológica en las universidades. En primer lugar, estos resultados pueden fomentar el desarrollo de planes de estudio que pongan más énfasis en las habilidades analíticas y lógicas para todos los estudiantes, así como introducir elementos creativos que puedan atraer el interés de los estudiantes con dominio del hemisferio derecho del cerebro. Así, se pueden diseñar programas educativos que se adapten a ambos tipos de dominancia cerebral, asegurando que los estudiantes reciban una formación integral y equilibrada. Además, estos hallazgos resaltan la necesidad de que las universidades creen entornos de aprendizaje inclusivos y de apoyo, especialmente para las mujeres que pueden enfrentar estereotipos de género que obstaculizan su participación en los campos STEM.
Citas
Abdel-Hameed, H. S., Rasheed, E. M., & Yousef, S. A. A. (2020). Assessment of Intelligence Quotient in School-Aged Children Who Are Breastfed Versus Artificial-Fed. The Egyptian Journal of Hospital Medicine, 80(2), 760–765. https://doi.org/10.21608/ejhm.2020.97057
Aburayash, H. (2021). Meta Cognition Thinking and Its Relationship to Patterns of Brain Dominance among Jordanian University Students According to Gender and Specialization Variables. International Journal of Emerging Technologies in Learning (IJET), 16(13), 4. https://doi.org/10.3991/ijet.v16i13.21999
Adams, C., Pente, P., Lemermeyer, G., & Rockwell, G. (2023). Ethical principles for artificial intelligence in K-12 education. Computers and Education: Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131
Bao, Y. (2019). Artificial Intelligence for civil engineering. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 52(5), 1–11.
Carino-Escobar, R. I., Galicia-Alvarado, M., Marrufo, O. R., Carrillo-Mora, P., & Cantillo-Negrete, J. (2020). Brain–computer interface performance analysis of monozygotic twins with discordant hand dominance: A case study. Laterality, 25(5), 513–536. https://doi.org/10.1080/1357650X.2019.1710525
Confalonieri, R., Lucchesi, F., Maffei, G., & Catuara-Solarz, S. (2022). A unified framework for managing sex and gender bias in AI models for healthcare. In Sex and Gender Bias in Technology and Artificial Intelligence (pp. 179–204). Elsevier. https://doi.org/10.1016/B978-0-12-821392-6.00004-2
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.
Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M. S., Chai, C., & Lin, Z. (2023). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, 112(1), 23–42. https://doi.org/10.1002/jee.20503
Dhanpat, N., Braine, R. De, & Geldenhuys, M. (2019). Preliminary development of the Higher Education Hindrance Demands Scale amongst academics in the South African context. SA Journal of Industrial Psychology, 45, 1–12. https://doi.org/10.4102/sajip.v45i0.1595
Drigas, A. S., & Ioannidou, R.-E. (2013). A Review on Artificial Intelligence in Special Education (pp. 385–391). https://doi.org/10.1007/978-3-642-35879-1_46
Filyushkina, V., Popov, V., Ushakov, V., Batalov, A., Tomskiy, A., Pronin, I., & Sedov, A. (2021). Influence of Dominance on Human Brain Activity During Voluntary Movement in Parkinson’s Disease (pp. 589–602). https://doi.org/10.1007/978-3-030-71637-0_68
Gadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. The International Journal of Information and Learning Technology, 34(2), 133–139. https://doi.org/10.1108/IJILT-09-2016-0048
Gannouni, S., Aledaily, A., Belwafi, K., & Aboalsamh, H. (2020). Adaptive Emotion Detection Using the Valence-Arousal-Dominance Model and EEG Brain Rhythmic Activity Changes in Relevant Brain Lobes. IEEE Access, 8, 67444–67455. https://doi.org/10.1109/ACCESS.2020.2986504
Garvanova*, M., & Papazova, E. (2019). Parenting Styles, Gender-Role Orientations and Romantic Beliefs and Experience In Emerging Adulthood. 188–197. https://doi.org/10.15405/epsbs.2019.01.19
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). MULTIVARIATE DATA ANALYSIS (EIGHTH EDITION). Annabel Ainscow. www.cengage.com/highered
Hall, P., & Ellis, D. (2023). A systematic review of socio-technical gender bias in AI algorithms. Online Information Review, 47(7), 1264–1279. https://doi.org/10.1108/OIR-08-2021-0452
Huang, J., Saleh, S., & Liu, Y. (2021). A Review on Artificial Intelligence in Education. Academic Journal of Interdisciplinary Studies, 10(3), 206. https://doi.org/10.36941/ajis-2021-0077
Kawakami, Y., L. Murashima, Y., Tsukimoto, M., Okada, H., Miyatake, C., Takagi, A., Ogawa, J., & Itoh, Y. (2021). The Roles of Dominance of the Nitric Oxide Fractions Nitrate and Nitrite in the Epilepsy-Prone EL Mouse Brain. Journal of Nippon Medical School, 88(3), 189–193. https://doi.org/10.1272/jnms.JNMS.2021_88-402
Kuner, R. (2021). Cellular circuits in the brain and their modulation in acute and chronic pain. Physiological Reviews, 101(1), 213–258. https://doi.org/10.1152/physrev.00040.2019
Legewie, J., & DiPrete, T. A. (2014). The High School Environment and the Gender Gap in Science and Engineering. Sociology of Education, 8(5), 231–245. https://doi.org/10.1177/0038040714547770
Li, S., Hanafiah, W., Rezai, A., & Kumar, T. (2022). Interplay Between Brain Dominance, Reading, and Speaking Skills in English Classrooms. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.798900
Lim, Z. Y., Sim, K. S., & Tan, S. C. (2021). Metric Learning Based Convolutional Neural Network for Left-Right Brain Dominance Classification. IEEE Access, 9, 120551–120566. https://doi.org/10.1109/ACCESS.2021.3107554
Lin, P.-H., Wooders, A., Wang, J. T.-Y., & Yuan, W. M. (2018). Artificial Intelligence, the Missing Piece of Online Education? IEEE Engineering Management Review, 46(3), 25–28. https://doi.org/10.1109/EMR.2018.2868068
Makhortykh, M., Urman, A., & Ulloa, R. (2021). Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines (pp. 36–50). https://doi.org/10.1007/978-3-030-78818-6_5
Marsden, N., Bhattacharyya, S., Meyer-Christodoulou, J., Martin, L., & Peine, A. (2022). Co-Design for Gender Equality in an AI-Based Virtual Assistant for Intensive Care Units. 2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association for Management of Technology (IAMOT) Joint Conference, 1–7. https://doi.org/10.1109/ICE/ITMC-IAMOT55089.2022.10033204
Merrick, C. M., Dixon, T. C., Breska, A., Lin, J., Chang, E. F., King-Stephens, D., Laxer, K. D., Weber, P. B., Carmena, J., Thomas Knight, R., & Ivry, R. B. (2022). Left hemisphere dominance for bilateral kinematic encoding in the human brain. ELife, 11. https://doi.org/10.7554/eLife.69977
Ofem Usani Joseph, Iyam Mary Arikpo, Ovat Sylvia Victor, Nwogwugwu Chidirim, Anake Paulina Mbua, Udeh Maryrose Ify, & Otu Bernard Diwa. (2024). Artificial Intelligence (AI) in academic research. A multi-group analysis of students’ awareness and perceptions using gender and programme type. Journal of Applied Learning & Teaching, 7(1). https://doi.org/10.37074/jalt.2024.7.1.9
Piaw, C. Y. (2011). Establishing a brain styles test: The YBRAINS test. Procedia - Social and Behavioral Sciences, 15, 4019–4027. https://doi.org/10.1016/j.sbspro.2011.04.407
Polák, P., Ka, R. D. Č., & Anský, J. Ž. I. T. Ň. (2014). Capability assessment of measuring equipment using statistic method. Management Systems in Production Engineering, 4(16), 184–186. https://doi.org/10.12914/MSPE
Rahmatian, R., & Zarekar, F. (2016). Inductive/Deductive Learning by Considering the Role of Gender—A Case Study of Iranian French-Learners. International Education Studies, 9(12), 254. https://doi.org/10.5539/ies.v9n12p254
Ramsay, J. O., & Silverman, B. W. (2015). Functional Data Analysis. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition. Harvard University. https://doi.org/10.1016/B978-0-08-097086-8.42046-5
Schulte Steinberg, A. L., & Hohenberger, C. (2023). Can AI close the gender gap in the job market? Individuals’ preferences for AI evaluations. Computers in Human Behavior Reports, 10, 100287. https://doi.org/10.1016/j.chbr.2023.100287
Shen, Z. (2023). Teaching Artificial Intelligence to “Rural Children”: The “Qingyun Primary School’s Practice” of Artificial Intelligence in Education in Rural Primary Schools (pp. 57–61). https://doi.org/10.1007/978-981-99-6097-2_8
Steffen, M. A., & Rehan, S. M. (2020). Genetic signatures of dominance hierarchies reveal conserved cis‐regulatory and brain gene expression underlying aggression in a facultatively social bee. Genes, Brain and Behavior, 19(1). https://doi.org/10.1111/gbb.12597
Suh, W., & Ahn, S. (2022). Development and Validation of a Scale Measuring Student Attitudes Toward Artificial Intelligence. SAGE Open, 12(2). https://doi.org/10.1177/21582440221100463
Suresh, V. C., Poornima, C., Anjana, K., & Debata, I. (2020). Assessment of brain dominance and its correlation with academic achievement among medical students: A cross-sectional study. Archives of Mental Health, 21(1), 25. https://doi.org/10.4103/AMH.AMH_3_20
Tandel, G. S. (2020). Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine, 122. https://doi.org/10.1016/j.compbiomed.2020.103804
Tison, E. B., Bateman, T., & Culver, S. M. (2011). Examination of the gender–student engagement relationship at one university. Assessment & Evaluation in Higher Education, 36(1), 27–49. https://doi.org/10.1080/02602930903197875
Van Heerden, A. (Hennie), Burger, M., & van Eck, E. (2020). Brain Dominance and Learning Style Preference of Quantity Surveying Students in South Africa and Malaysia (pp. 121–127). https://doi.org/10.1007/978-3-030-51626-0_14
Wang, L. (2020). Mediation Relationships Among Gender, Spatial Ability, Math Anxiety, and Math Achievement. Educational Psychology Review, 32(1), 1–15. https://doi.org/10.1007/s10648-019-09487-z
Wang, X.-D., Xu, H., Yuan, Z., Luo, H., Wang, M., Li, H.-W., & Chen, L. (2021). Brain Hemispheres Swap Dominance for Processing Semantically Meaningful Pitch. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.621677
Wei, Y., Liang, X., Guo, X., Wang, X., Qi, Y., Ali, R., Wu, M., Qian, R., Wang, M., Qiu, B., Li, H., Fu, X., & Chen, L. (2022). Brain hemispheres with right temporal lobe damage swap dominance in early auditory processing of lexical tones. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.909796
Zellou, G., Cohn, M., & Ferenc Segedin, B. (2021). Age- and Gender-Related Differences in Speech Alignment Toward Humans and Voice-AI. Frontiers in Communication, 5. https://doi.org/10.3389/fcomm.2020.600361
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mohammad Archi Maulyda, Sugiman Sugiman, Wuri Wuryandani , Hidar Amaruddin, Ashar Pajarungi Anar
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El/la autor/a que publica en esta revista está de acuerdo con los términos siguientes:
- El/la autor/a conserva los derechos de autoría y otorga a la revista el derecho de primera publicación de la obra.
- Los textos se difundirán con la licencia de reconocimiento de Creative Commons que permite compartir la obra con terceros, siempre que éstos reconozcan su autoría, su publicación inicial en esta revista y las condiciones de la licencia.