Impacto de la alfabetización digital, el uso de herramientas de IA y la colaboración entre pares en el aprendizaje asistido por IA: percepciones de los estudiantes universitarios
DOI:
https://doi.org/10.1344/der.2024.45.43-49Palabras clave:
herramientas de IA, Alfabetización digital, aprendizaje colaborativo asistido por pares, aprendizaje asistido por ordenador, aprendizaje asistido por IA, aprendizaje personalizadoResumen
Los sistemas educativos respaldados por tecnología se integraron perfectamente en todo el mundo en respuesta a los desafíos planteados por la pandemia de Covid-19. Los rápidos desarrollos de las herramientas digitales con soporte de Inteligencia Artificial (IA) también se difunden fácilmente entre las comunidades educativas. Este trabajo de investigación investiga el impacto sinérgico de la alfabetización digital, la incorporación de herramientas de inteligencia artificial y el aprendizaje colaborativo apoyado por pares (PSCL) en las percepciones de aprendizaje de los estudiantes universitarios. La investigación tiene como objetivo discernir las implicaciones de estas facetas tecnológicas y sociales en las actitudes de los estudiantes hacia el proceso de aprendizaje asistido por IA. Para esta investigación descriptiva se realizó una encuesta estructurada basada en cuestionarios entre los estudiantes universitarios. Se analizaron 409 respuestas recopiladas con SPSS, Excel y Process Macro. Se encuentra que la alfabetización digital, el uso de herramientas de IA y el PSCL sobre el aprendizaje asistido por IA de los estudiantes estaban correlacionados positivamente. La ruta mediadora parcial a través del uso de herramientas PSCL y AI tiene una influencia positiva significativa en el proceso de aprendizaje de los estudiantes. Los conocimientos recopilados en este estudio pueden informar a educadores, formuladores de políticas e instituciones sobre cómo optimizar la combinación de alfabetización digital, herramientas de inteligencia artificial y PSCL para mejorar el entorno de aprendizaje contemporáneo. A medida que las universidades navegan en la era digital, esta investigación proporciona una comprensión matizada de la dinámica que moldea las percepciones de los estudiantes, ofreciendo información valiosa sobre los aspectos multifacéticos de la IA que influyen en el panorama educativo. ChatGPTTechnology-supported educational systems have been seamlessly integrated worldwide in response to the challenges posed by the Covid-19 pandemic. The rapid development of digital tools supported by Artificial Intelligence (AI) has also been easily disseminated among educational communities. This research investigates the synergistic impact of digital literacy, the incorporation of AI tools, and Peer Supported Collaborative Learning (PSCL) on university students' learning perceptions. The study aims to discern the implications of these technological and social facets on students' attitudes towards the AI-assisted learning process. For this descriptive research, a structured survey based on questionnaires was conducted among university students. A total of 409 responses were analyzed using SPSS, Excel, and Process Macro. It was found that students' digital literacy, the use of AI tools, and PSCL in AI-assisted learning were positively correlated. The partial mediation path through the use of PSCL and AI tools has a significant positive influence on the students' learning process. The insights gathered from this study can inform educators, policymakers, and institutions about optimizing the combination of digital literacy, AI tools, and PSCL to improve the contemporary learning environment. As universities navigate the digital era, this research provides a nuanced understanding of the dynamics shaping student perceptions, offering valuable insights into the multifaceted aspects of AI influencing the educational landscape.
Citas
Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. https://doi.org/10.30935/cedtech/13152
Agarwal, P., Swami, S., & Malhotra, S. K. (2022). Artificial intelligence adoption in the post COVID-19 new-normal and role of smart technologies in transforming business: a review. Journal of Science and Technology Policy Management.
Aggarwal, D. (2023). Integration of innovative technological developments and AI with education for an adaptive learning pedagogy. China Petroleum Processing and Petrochemical Technology, 23(2).
Ansari, J. A. N., & Khan, N. A. (2020). Exploring the role of social media in collaborative learning the new domain of learning. Smart Learning Environments, 7(1), 1-16.
Chen, X., Zou, D., Xie, H. R., & Su, F. (2021). Twenty-five years of computer-assisted language learning: A topic modeling analysis.
Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229-1245. https://doi.org/10.1080/00131857.2020.1728732
Ervianti, E., Sampelolo, R., & Pratama, M. P. (2023). The Influence of Digital Literacy on Student Learning. Klasikal: Journal of Education, Language Teaching and Science, 5(2), 358-365. DOI: https://doi.org/10.52208/klasikal.v5i2.878
Fitria, T. N. (2021, December). Artificial Intelligence (AI) In Education: Using AI Tools for Teaching and Learning Process. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 4, No. 1, pp. 134-147).
Grindal, M., Admire, A., Carkin, D. M., & Nieri, T. (2023). Gender and substance use among Latinx college students: An application of social structure social learning theory. Journal of ethnicity in substance abuse, 1-25.
Guppy, N., Verpoorten, D., Boud, D., Lin, L., Tai, J., & Bartolic, S. (2022). The post‐COVID‐19 future of digital learning in higher education: Views from educators, students, and other professionals in six countries. British Journal of Educational Technology, 53(6), 1750-1765.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition. Essex: Pearson Education Limited, 1(2).
Hayden, C. L., Carrico, C., Ginn, C. C., Felber, A., & Smith, S. (2021). Social Constructivism in Learning: Peer Teaching & Learning.
Järvelä, S., Hadwin, A., Malmberg, J., & Miller, M. (2018). Contemporary perspectives of regulated learning in collaboration. International handbook of the learning sciences, 127-136.
Jisc (2019), “Building digital capabilities: the six elements defined”, available at: http://repository.jisc.ac.uk/6611/1/JFL0066F_DIGIGAP_MOD_IND_FRAME.PDF
Joseph, G. V., & Thomas, K. A. (2020a). Volatility of digital technology enabled learning through social media: educators’ apprehensions. TEST Engineering Management, 82, 5832-9.
Joseph, G. V., & Thomas, K. A. (2020b). Moderating effect of social media usage on technology barriers to technology adoption by teachers. International Journal of Advanced Science and Technology, 29(03), 5504-5512.
Joseph, G. V., & Thomas, K. A. (2021). Integration of technology initiatives with educational neuroscience and its impact on technology readiness to technology adoption by HSS Teachers, Kerala. Neuro-Systemic Applications in Learning, 423-444. https://doi.org/10.1007/978-3-030-72400-9_21
Joseph, G. V., & Thomas, M. A. (2022, August). The Mediation Effect of Technology Anxiety and Barriers on Technology Exposure to Teachers’ Technology Adoption. In 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT) (pp. 1737-1741). IEEE. https://doi.org/10.1109/ICICICT54557.2022.9918006
Joseph, G. V., Varghese, S., Thomas, M. A., Athira, P., Joseph, J., John, T., & Prasad, M. (2023, December). Enhancing Industry 5.0 Resilience among Management Professionals through Technical Competency and Organizational leadership. In 2023 IEEE Technology & Engineering Management Conference-Asia Pacific (TEMSCON-ASPAC) (pp. 1-8). IEEE. https://doi.org/10.1109/TEMSCON-ASPAC59527.2023.10531436
Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence, 2, 100017. https://doi.org/10.1016/j.caeai.2021.100017
Kim, B. (2001). Social constructivism. Emerging perspectives on learning, teaching, and technology, 1(1), 16.
Kimbrough, E. O., McGee, A. D., & Shigeoka, H. (2022). How do peers impact learning? An experimental investigation of peer-to-peer teaching and ability tracking. Journal of Human Resources, 57(1), 304-339.
Lai, C. L. (2021). Exploring University Students’ Preferences for AI-Assisted Learning Environment. Educational Technology & Society, 24(4), 1-15. https://www.jstor.org/stable/48629241
Lingga, R A., Andriani, D. N., & Wirawan, Y. R. (2022, July). Pengaruh Literasi Digital Terhadap Hasil Belajar Mahasiswa Gen-Z Di Masa Pandemi Covid-19. In Seminar Nasional Sosial, Sains, Pendidikan, Humaniora (Senassdra) (Vol. 1, No. 1, pp. 87-96). http://prosiding.unipma.ac.id/index.php/SENASSDRA/article/view/2310
Manubey, J., Koroh, T. D., Dethan, Y. D., & Banamtuan, M. F. (2022). Pengaruh Literasi Digital terhadap Hasil Belajar Mahasiswa. Edukatif: Jurnal Ilmu Pendidikan, 4(3), 4288-4294. https://doi.org/10.31004/edukatif.v4i3.2590
McGarr, O., McCormack, O., & Comerford, J. (2019). Peer-supported collaborative inquiry in teacher education: exploring the influence of peer discussions on pre-service teachers’ levels of critical reflection. Irish Educational Studies, 38(2), 245-261.
Millis, B. (Ed.). (2023). Cooperative learning in higher education: Across the disciplines, across the academy. Taylor & Francis.
Ogata, H., Flanagan, B., Takami, K., Dai, Y., Nakamoto, R., & Takii, K. (2024). EXAIT: Educational eXplainable artificial intelligent tools for personalized learning. Research and Practice in Technology Enhanced Learning, 19. https://doi.org/10.58459/rptel.2024.19019
Öncül, G. (2021). Defining the need: digital literacy skills for first-year university students. Journal of Applied Research in Higher Education, 13(4), 925-943. https://doi.org/10.1108/JARHE-06-2020-0179
Onesi-Ozigagun, O., Ololade, Y. J., Eyo-Udo, N. L., & Ogundipe, D. O. (2024). Revolutionizing education through AI: a comprehensive review of enhancing learning experiences. International Journal of Applied Research in Social Sciences, 6(4), 589-607. https://doi.org/10.51594/ijarss.v6i4.1011
Pangrazio, L., Godhe, A. L., & Ledesma, A. G. L. (2020). What is digital literacy? A comparative review of publications across three language contexts. E-learning and Digital Media, 17(6), 442-459. https://doi.org/10.1177/2042753020946291
Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A., & Yousufi, S. Q. (2023). Factors affecting students’ learning performance through collaborative learning and engagement. Interactive Learning Environments, 31(4), 2371-2391. https://doi.org/10.1111/bjet.12917
Ramadevi, J., Sushama, C., Balaji, K., Talasila, V., & Sindhwani, N. (2023). AI enabled value-oriented collaborative learning: Centre for innovative education. The Journal of High Technology Management Research, 34(2), 100478. https://doi.org/10.1016/j.hitech.2023.100478
Rane, N., Choudhary, S., & Rane, J. (2023). Education 4.0 and 5.0: Integrating Artificial Intelligence (AI) for personalized and adaptive learning. Available at SSRN 4638365.
Ravinder Kumar, R. (2017). The effect of collaborative learning on enhancing student achievement: A meta-analysis. [Doctoral dissertation]. Concordia University. https://spectrum.library.concordia.ca/982327/.
Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), 11524. https://doi.org/10.3390/su151511524
Saputra, M., & Al Siddiq, I. H. (2020). Social media and digital citizenship: The urgency of digital literacy in the middle of a disrupted society Era. International Journal of Emerging Technologies in Learning (Online), 15(7), 156.
Schunk, D. H., & Greene, J. A. (2017). Historical, contemporary, and future perspectives on self-regulated
Su, Y. (2023). Delving into EFL teachers’ digital literacy and professional identity in the pandemic era: Technological Pedagogical Content Knowledge (TPACK) framework. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e16361
Tzirides, A. O. O., Zapata, G., Kastania, N. P., Saini, A. K., Castro, V., Ismael, S. A. R., ... & Kalantzis, M. (2024). Combining Human and Artificial Intelligence for Enhanced AI Literacy in Higher Education. Computers and Education Open, 100184. https://doi.org/10.1016/j.caeo.2024.100184
Vargas-Murillo, A. R., de la Asuncion, I. N. M., & de Jesús Guevara-Soto, F. (2023). Challenges and Opportunities of AI-Assisted Learning: A Systematic Literature Review on the Impact of ChatGPT Usage in Higher Education. International Journal of Learning, Teaching and Educational Research, 22(7), 122-135.
Wang, X., Liu, Q., Pang, H., Tan, S. C., Lei, J., Wallace, M. P., & Li, L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers & Education, 194, 104703. https://doi.org/10.1016/j.compedu.2022.104703
Yazon, A. D., Ang-Manaig, K., Buama, C. A. C., & Tesoro, J. F. B. (2019). Digital literacy, digital competence and research productivity of educators. Universal Journal of Educational Research, 7(8), 1734-1743. https://doi.org/10.13189/ujer.2019.070812.
Zancajo, A., Verger, A., & Bolea, P. (2022). Digitalization and beyond: the effects of Covid-19 on post-pandemic educational policy and delivery in Europe. Policy and Society, 41(1), 111-128.
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021, 1-18. https://doi.org/10.1155/2021/8812542
Zhang, J., & Zhang, Z. (2024). AI in teacher education: Unlocking new dimensions in teaching support, inclusive learning, and digital literacy. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12988
Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan, Y. (2023). Intelligent computing: the latest advances, challenges, and future. Intelligent Computing, 2, 0006.
Zimmerman, B. J., & Schunk, D. H. (2011). Handbook of self-regulation of learning and performance. Routledge/Taylor & Francis Group.(2nd ed., pp. 1–15). https://doi.org/10.4324/9781315697048
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Genimon Vadakkemulanjanal Joseph, Athira P, Anit Thomas M, Therese V Roy, Malavika Prasad Prasad
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El/la autor/a que publica en esta revista está de acuerdo con los términos siguientes:
- El/la autor/a conserva los derechos de autoría y otorga a la revista el derecho de primera publicación de la obra
- Los textos publicados en Digital Education Review están bajo una licencia Reconocimiento-No comercial-Sin obras derivadas 3.0 España de Creative Commons.
- Para poder mencionar los trabajos se debe citar la fuente (DER) y el autor del texto.
- Digital Education Review (DER) no acepta ninguna responsabilidad por los puntos de vista y las declaraciones hechas por los autores en su trabajo.