Leveraging Artificial Intelligence in Higher Educational Institutions: A Comprehensive Overview
DOI:
https://doi.org/10.1344/REYD2024.30.45777Palabras clave:
Inteligencia artificial (IA), Instituciones de educación superior (IES), Tecnología educativa, Aprendizaje, participación estudiantilResumen
A medida que el panorama de la educación experimenta rápidas transformaciones en la era digital, las instituciones de educación superior recurren cada vez más a la inteligencia artificial (IA) para mejorar los procesos de enseñanza, aprendizaje y administrativos. Este resumen proporciona una descripción general completa del estado actual y las perspectivas futuras de la integración de la IA en la educación superior. La integración de la IA en las instituciones de educación superior abarca varias facetas, incluido el aprendizaje personalizado, los sistemas de tutoría inteligente, la calificación automatizada y la eficiencia administrativa. Las herramientas educativas impulsadas por IA aprovechan los algoritmos de aprendizaje automático para analizar el desempeño individual de los estudiantes, adaptar la entrega de contenido y proporcionar retroalimentación personalizada, optimizando así la experiencia de aprendizaje. Esto no solo atiende a diversos estilos de aprendizaje, sino que también fomenta un entorno educativo más inclusivo y atractivo. La IA desempeña un papel fundamental en la automatización de las tareas administrativas, como los procesos de admisión, la programación de cursos y la asignación de recursos. Esta racionalización de las funciones administrativas no solo reduce la carga de las instituciones educativas, sino que también contribuye a la rentabilidad y la eficiencia operativa. El resumen proporciona una instantánea del panorama actual de la IA en las instituciones de educación superior, ofreciendo información sobre el poder transformador de las tecnologías de IA y los desafíos y oportunidades que se avecinan. A medida que los paradigmas educativos continúan evolucionando, la integración juiciosa de la IA tiene el potencial de revolucionar las metodologías de enseñanza y aprendizaje, allanando el camino para un sistema de educación superior más eficiente, adaptativo e inclusivo.
Citas
Abram, M., Abram, J., Cullen, P., & Goldstein, L. (2019). Artificial intelligence, ethics, and enhanced data stewardship. IEEE Security & Privacy, 17(2), 17–30.
Aiken, R. M., & Epstein, R. G. (2000). Ethical guidelines for AI in education: Starting a conversation. International Journal of Artificial Intelligence in Education, 11, 163–176.
Al Braiki, B, Harous, S., Zaki, N., & Alnajjar, F. (2020).Artificial intelligence in education and assessment methods. Bulletin of Electrical Engineering and Informatics, 9(5), 1998–2007.
Arpaci, I. (2019). A hybrid modeling approach for predicting the educational use of mobile cloud computing services in higher education. Computers in Human Behavior, 90, 181–187.
Bates, T., Cobo, C., Mari˜no, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(42).
Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002.
Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. (2010). Preparing students for future learning with Teachable Agents. Educational Technology Research & Development, 58(6), 649–669.
Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2020). Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 107, 105584.
Cung, B., Xu, D., Eichhorn, S., & Warschauer, M. (2019). Getting academically underprepared students ready through college developmental education: Does the course delivery format matter? American Journal of Distance Education, 33(3), 178–194.
Dias, S. B., Hadjileontiadou, S. J., Hadjileontiadis, L. J., & Diniz, J. A. (2015). Fuzzy cognitive mapping of LMS users’ Quality of interaction within higher education blended-learning environment. Expert Systems with Applications, 42(21), 7399–7423.
Edwards, B. I., & Cheok, A. D. (2018). Why not robot teachers: Artificial intelligence for addressing teacher shortage. Applied Artificial Intelligence, 32(4), 345–360.
Etzioni, A., & Etzioni, O. (2017). Incorporating ethics into artificial intelligence. The Journal of Ethics, 21(4), 403–418.
Garito, M. A. (1991). Artificial intelligence in education: Evolution of the teaching-learning relationship. British Journal of Educational Technology, 22(1), 41–47.
Gonzalez, A. J., Hollister, J. R., Demara, R. F., Leigh, J., Lanman, B., Lee, S.-Y., et al. (2017). AI in informal science education: Bringing Turing back to life to perform the Turing test. International Journal of Artificial Intelligence in Education, 27(2), 353–384.
Griol, D., Molina, J. M., & Callejas, Z. (2014). An approach to develop intelligent learning environments by means of immersive virtual worlds. Journal of Ambient Intelligence and Smart Environments, 6(2), 237–255.
Hagendorff, T. (2019). From privacy to anti-discrimination in times of machine learning. Ethics and Information Technology, 1–13.
Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 99–120.
Hinojo-Lucena, F. J., Aznar-Díaz, I., C´aceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51.
Hwang, G., Sung, H., Chang, S., & Huang, X. (2020). A fuzzy expert system-based adaptive learning approach to improving students’ learning performances by considering affective and cognitive factors. Computers and Education: Artificial Intelligence, 1(1), 100-203.
Ijaz, K., Bogdanovych, A., &Trescak, T. (2017). Virtual worlds vs books and videos in history education. Interactive Learning Environments, 25(7), 904–929.
Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. In Computers and education: Artificial intelligence (p. 100017).
Kelly, A. E., Sleeman, D., & Gilhooly, K. J. (1993). Artificial intelligence in education: Using state space search and heuristics in mathematics instruction. International Journal of Man-Machine
Studies, 38(4), 725–746.
K¨ose, U., & Arslan, A. (2016). Intelligent e-learning system for improving students’ academic achievements in computer programming courses. International Journal of Engineering Education, 32, 185–198.
Lee, H. S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Automated text scoring and real-time adjustable feedback: Supporting revision of scientific arguments involving uncertainty. Science Education, 103(3), 590–622.
Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17–24.
Mas-Sanso, R., & Manresa-Yee, C. (2016). Gamifying an artificial intelligence course in engineering education. International Journal of Engineering Education, 32, 513–520.
Matsuda, N., Weng, W., & Wall, N. (2020). The effect of metacognitive scaffolding for learning by teaching a teachable agent. International Journal of Artificial Intelligence in Education, 1–37.
McCarthy, K. S., Likens, A. D., Johnson, A. M., Guerrero, T. A., & McNamara, D. S. (2018). Metacognitive overload!: Positive and negative effects of metacognitive prompts in an intelligent tutoring system. International Journal of Artificial Intelligence in Education, 28(3), 420–438.
McKenney, S., & Reeves, T. C. (2018). Conducting educational design research. NYC: Routledge.
Mclaren, B. M., Deleeuw, K. E., & Mayer, R. E. (2011). Polite web-based intelligent tutors: Can they improve learning in classrooms? Computers & Education, 56(3), 574–584.
Munawar, S., Toor, S. K., Aslam, M., & Hamid, M. (2018). Move to smart learning environment: Exploratory research of challenges in computer laboratory and design intelligent virtual laboratory for elearning technology. Eurasia Journal of Mathematics, Science and Technology Education, 14(5), 1645–1662.
Nuong, M. D., & Ari Ragavan, N. (2023). Digital future of the hospitality industry and hospitality education globally: Review of related literature. Asia-Pacific Journal of Futures in Education and Society, 2(2), 71–100.
Rapanta, C., & Walton, D. (2016). The use of argument maps as an assessment tool in higher education. International Journal of Educational Research, 79, 211–221.
Reynolds, T., Reeves, T., Bonk, C., & Zhang, K. (2020). MOOCs and open education: Future
opportunities. In K. Zhang, C. J. Bonk, T. Reeves, & T. Reynolds (Eds.), MOOCs and open education in the Global South: Challenges, successes, and opportunities (pp. 342–350). NY: Routledge, 2020.
Romero, C., & Ventura, S. (2013). In Data mining in education. Wiley interdisciplinary reviews: Data mining and knowledge discovery (Vol. 3, pp. 12–27).
Roschelle, J., Lester, J., & Fusco, J. (Eds.). (2020). AI and the future of learning: Expert panel report. Digital Promise.
Samarakou, M., Fylladitakis, E. D., Früh, W. G., Hatziapostolou, A., &Gelegenis, J. J. (2015). An advanced elearning environment developed for engineering learners. International Journal of Emerging Technologies in Learning (IJET), 10(3), 22–33.
Samarakou, M., Tsaganou, G., & Papadakis, A. (2018). An e-learning system for extracting text comprehension and learning style characteristics. Educational Technology & Society, 21(1), 126–136.
Santos, F. R. D., & Notargiacomo, P. (2018). Intelligent educational assistant based on multiagent system and context-aware computing. International Journal of Advanced Computer Science and Applications, 9(4), 236–243.
Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2021). Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interactive learning environments, 1–19.
T’arning, B., Silvervarg, A., Gulz, A., & Haake, M. (2019). Instructing a teachable agent with low or high self-efficacy–does similarity attract? International Journal of Artificial Intelligence in Education, 29(1), 89–121.
Wei, Y., Yang, Q., Chen, J., & Hu, J. (2018). The exploration of a machine learning approach for the assessment of learning styles changes. Mechatronic Systems and Control (Formerly Control and Intelligent Systems), 46(3), 121–126.
Yoon, D.-M., & Kim, K.-J. (2015). Challenges and opportunities in game artificial intelligence education using angry birds. IEEE Access, 3, 793–804.
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1).
Zhang, K., Bonk, C., Reeves, T., & Reynolds, T. (2020). MOOCs and open education in the Global South: Successes and challenges. In K. Zhang, C. J. Bonk, T. Reeves, & T. Reynolds (Eds.), MOOCs and open education in the Global South: Challenges, successes, and opportunities (pp. 1–14). NY: Routledge, 2020.
Zheng, J., Zhang, Q., Xu, S., Peng, H., & Wu, Q. (2018). Cognition-based context-aware cloud computing for intelligent robotic systems in mobile education. IEEE Access, 6, 49103–49111.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mildred Nuong Deri, Amrik Singh, Perpetual Zaazie, David Anandene
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El/la autor/a que publica en esta revista está de acuerdo con los términos siguientes:
- El/la autor/a conserva los derechos de autoría y otorga a la revista el derecho de primera publicación de la obra.
- Los textos se difundirán con la licencia de reconocimiento de Creative Commons que permite compartir la obra con terceros, siempre que éstos reconozcan su autoría, su publicación inicial en esta revista y las condiciones de la licencia.