Leveraging Artificial Intelligence in Higher Educational Institutions: A Comprehensive Overview

Autors/ores

DOI:

https://doi.org/10.1344/REYD2024.30.45777

Paraules clau:

Intel·ligència Artificial (IA), Institucions d'Educació Superior (HEI), , Tecnologia Educativa, Ensenyament, Aprenentatge, Compromís de l'Estudiant.

Resum

A mesura que el paisatge de l'educació experimenta ràpides transformacions en l'era digital, les institucions d'educació superior estan recorrent cada vegada més a la intel·ligència artificial (IA) per millorar l'ensenyament, l'aprenentatge i els processos administratius. Aquest resum proporciona una visió general completa de l'estat actual i les perspectives futures d'integrar la IA a l'educació superior.La integració de la IA en les institucions d'educació superior engloba diverses facetes, incloent l'aprenentatge personalitzat, els sistemes de tutoria intel·ligents, la qualificació automatitzada i l'eficiència administrativa. Les eines educatives impulsades per IA aprofiten els algorismes d'aprenentatge automàtic per analitzar el rendiment individual de l'estudiant, adaptar el lliurament de continguts i proporcionar comentaris personalitzats, optimitzant així l'experiència d'aprenentatge. Això no només atén estils d'aprenentatge diversos, sinó que també fomenta un entorn educatiu més inclusiu i atractiu. La IA juga un paper fonamental en l'automatització de tasques administratives, com ara processos d'admissió, programació de cursos i assignació de recursos. Aquesta racionalització de les funcions administratives no sols redueix la càrrega sobre les institucions educatives, sinó que també contribueix a la rendibilitat i l'eficiència operativa. L'abstract proporciona una instantània del panorama actual de la IA a les institucions educatives superiors, oferint informació sobre el poder transformador de les tecnologies de la IA i els reptes i oportunitats que tenim per davant. A mesura que els paradigmes educatius continúen evolucionant, la integració assenyada de la IA té el potencial de revolucionar les metodologies d'ensenyament i aprenentatge, aplanant el camí per a un sistema d'educació superior més eficient, adaptatiu i inclusiu.

Biografies de l'autor/a

Mildred Nuong Deri, University of Energy and Natural Resources (Ghana)

Professora

Departament d'Ecoturisme, Recreació i Hospitalitat

Amrik Singh, Lovely Professional University (India)

Professor i cap de l'Escola superior d'Hoteleria i Turisme

Universitat Professional

Perpetual Zaazie, University of Energy and Natural Resources (Ghana)

Professora

Departament d'Ecoturisme, Recreació i Hospitalitat

David Anandene, University of Cape Coast (Ghana)

Departament de Turisme i Hoteleria  

Referències

Abram, M., Abram, J., Cullen, P., & Goldstein, L. (2019). Artificial intelligence, ethics, and enhanced data stewardship. IEEE Security & Privacy, 17(2), 17–30.

Aiken, R. M., & Epstein, R. G. (2000). Ethical guidelines for AI in education: Starting a conversation. International Journal of Artificial Intelligence in Education, 11, 163–176.

Al Braiki, B, Harous, S., Zaki, N., & Alnajjar, F. (2020).Artificial intelligence in education and assessment methods. Bulletin of Electrical Engineering and Informatics, 9(5), 1998–2007.

Arpaci, I. (2019). A hybrid modeling approach for predicting the educational use of mobile cloud computing services in higher education. Computers in Human Behavior, 90, 181–187.

Bates, T., Cobo, C., Mari˜no, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(42).

Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002.

Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. (2010). Preparing students for future learning with Teachable Agents. Educational Technology Research & Development, 58(6), 649–669.

Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2020). Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 107, 105584.

Cung, B., Xu, D., Eichhorn, S., & Warschauer, M. (2019). Getting academically underprepared students ready through college developmental education: Does the course delivery format matter? American Journal of Distance Education, 33(3), 178–194.

Dias, S. B., Hadjileontiadou, S. J., Hadjileontiadis, L. J., & Diniz, J. A. (2015). Fuzzy cognitive mapping of LMS users’ Quality of interaction within higher education blended-learning environment. Expert Systems with Applications, 42(21), 7399–7423.

Edwards, B. I., & Cheok, A. D. (2018). Why not robot teachers: Artificial intelligence for addressing teacher shortage. Applied Artificial Intelligence, 32(4), 345–360.

Etzioni, A., & Etzioni, O. (2017). Incorporating ethics into artificial intelligence. The Journal of Ethics, 21(4), 403–418.

Garito, M. A. (1991). Artificial intelligence in education: Evolution of the teaching-learning relationship. British Journal of Educational Technology, 22(1), 41–47.

Gonzalez, A. J., Hollister, J. R., Demara, R. F., Leigh, J., Lanman, B., Lee, S.-Y., et al. (2017). AI in informal science education: Bringing Turing back to life to perform the Turing test. International Journal of Artificial Intelligence in Education, 27(2), 353–384.

Griol, D., Molina, J. M., & Callejas, Z. (2014). An approach to develop intelligent learning environments by means of immersive virtual worlds. Journal of Ambient Intelligence and Smart Environments, 6(2), 237–255.

Hagendorff, T. (2019). From privacy to anti-discrimination in times of machine learning. Ethics and Information Technology, 1–13.

Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 99–120.

Hinojo-Lucena, F. J., Aznar-Díaz, I., C´aceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51.

Hwang, G., Sung, H., Chang, S., & Huang, X. (2020). A fuzzy expert system-based adaptive learning approach to improving students’ learning performances by considering affective and cognitive factors. Computers and Education: Artificial Intelligence, 1(1), 100-203.

Ijaz, K., Bogdanovych, A., &Trescak, T. (2017). Virtual worlds vs books and videos in history education. Interactive Learning Environments, 25(7), 904–929.

Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. In Computers and education: Artificial intelligence (p. 100017).

Kelly, A. E., Sleeman, D., & Gilhooly, K. J. (1993). Artificial intelligence in education: Using state space search and heuristics in mathematics instruction. International Journal of Man-Machine

Studies, 38(4), 725–746.

K¨ose, U., & Arslan, A. (2016). Intelligent e-learning system for improving students’ academic achievements in computer programming courses. International Journal of Engineering Education, 32, 185–198.

Lee, H. S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Automated text scoring and real-time adjustable feedback: Supporting revision of scientific arguments involving uncertainty. Science Education, 103(3), 590–622.

Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17–24.

Mas-Sanso, R., & Manresa-Yee, C. (2016). Gamifying an artificial intelligence course in engineering education. International Journal of Engineering Education, 32, 513–520.

Matsuda, N., Weng, W., & Wall, N. (2020). The effect of metacognitive scaffolding for learning by teaching a teachable agent. International Journal of Artificial Intelligence in Education, 1–37.

McCarthy, K. S., Likens, A. D., Johnson, A. M., Guerrero, T. A., & McNamara, D. S. (2018). Metacognitive overload!: Positive and negative effects of metacognitive prompts in an intelligent tutoring system. International Journal of Artificial Intelligence in Education, 28(3), 420–438.

McKenney, S., & Reeves, T. C. (2018). Conducting educational design research. NYC: Routledge.

Mclaren, B. M., Deleeuw, K. E., & Mayer, R. E. (2011). Polite web-based intelligent tutors: Can they improve learning in classrooms? Computers & Education, 56(3), 574–584.

Munawar, S., Toor, S. K., Aslam, M., & Hamid, M. (2018). Move to smart learning environment: Exploratory research of challenges in computer laboratory and design intelligent virtual laboratory for elearning technology. Eurasia Journal of Mathematics, Science and Technology Education, 14(5), 1645–1662.

Nuong, M. D., & Ari Ragavan, N. (2023). Digital future of the hospitality industry and hospitality education globally: Review of related literature. Asia-Pacific Journal of Futures in Education and Society, 2(2), 71–100.

Rapanta, C., & Walton, D. (2016). The use of argument maps as an assessment tool in higher education. International Journal of Educational Research, 79, 211–221.

Reynolds, T., Reeves, T., Bonk, C., & Zhang, K. (2020). MOOCs and open education: Future

opportunities. In K. Zhang, C. J. Bonk, T. Reeves, & T. Reynolds (Eds.), MOOCs and open education in the Global South: Challenges, successes, and opportunities (pp. 342–350). NY: Routledge, 2020.

Romero, C., & Ventura, S. (2013). In Data mining in education. Wiley interdisciplinary reviews: Data mining and knowledge discovery (Vol. 3, pp. 12–27).

Roschelle, J., Lester, J., & Fusco, J. (Eds.). (2020). AI and the future of learning: Expert panel report. Digital Promise.

Samarakou, M., Fylladitakis, E. D., Früh, W. G., Hatziapostolou, A., &Gelegenis, J. J. (2015). An advanced elearning environment developed for engineering learners. International Journal of Emerging Technologies in Learning (IJET), 10(3), 22–33.

Samarakou, M., Tsaganou, G., & Papadakis, A. (2018). An e-learning system for extracting text comprehension and learning style characteristics. Educational Technology & Society, 21(1), 126–136.

Santos, F. R. D., & Notargiacomo, P. (2018). Intelligent educational assistant based on multiagent system and context-aware computing. International Journal of Advanced Computer Science and Applications, 9(4), 236–243.

Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2021). Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interactive learning environments, 1–19.

T’arning, B., Silvervarg, A., Gulz, A., & Haake, M. (2019). Instructing a teachable agent with low or high self-efficacy–does similarity attract? International Journal of Artificial Intelligence in Education, 29(1), 89–121.

Wei, Y., Yang, Q., Chen, J., & Hu, J. (2018). The exploration of a machine learning approach for the assessment of learning styles changes. Mechatronic Systems and Control (Formerly Control and Intelligent Systems), 46(3), 121–126.

Yoon, D.-M., & Kim, K.-J. (2015). Challenges and opportunities in game artificial intelligence education using angry birds. IEEE Access, 3, 793–804.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1).

Zhang, K., Bonk, C., Reeves, T., & Reynolds, T. (2020). MOOCs and open education in the Global South: Successes and challenges. In K. Zhang, C. J. Bonk, T. Reeves, & T. Reynolds (Eds.), MOOCs and open education in the Global South: Challenges, successes, and opportunities (pp. 1–14). NY: Routledge, 2020.

Zheng, J., Zhang, Q., Xu, S., Peng, H., & Wu, Q. (2018). Cognition-based context-aware cloud computing for intelligent robotic systems in mobile education. IEEE Access, 6, 49103–49111.

Descàrregues

Publicades

2024-10-02 — Actualitzat el 2024-10-02

Com citar

Nuong Deri, M. ., Singh, A., Zaazie, P. ., & Anandene, D. . (2024). Leveraging Artificial Intelligence in Higher Educational Institutions: A Comprehensive Overview. Revista d’Educació I Dret, (30). https://doi.org/10.1344/REYD2024.30.45777