Teaching and learning of Sciences at preschool: the construction of scientific precursor models
DOI:
https://doi.org/10.1344/reire2010.3.1313Keywords:
scientific precursor models, scientific procedural and communicative skills, teaching and learning, preschool educationAbstract
In this paper we discuss preschool children flotation scientific precursor model (SPM) construction based on the objects’ material nature by using scientific procedural and communicative skills in a dialogical context. This exploratory study used a qualitative data collection and analysis, and was conducted in three phases: pre-interview, instructional process and post-interview. Results show that after the instructional period several children were lead to the construction of the precursor model, and the whole children were lead to a qualitative upgrade of reasoning considering flotation more accurately in terms of the event itself, and changing their way of justifying flotation towards a scientific way of looking at the phenomena. Therefore we assume that educational activities were effective and that in the context of preschool education this approach could improve scientific teaching and learning to a better understanding of science topics in order to develop the basis of scientific literacy since early instructional stages.References
Bliss, J. y Ogborn, J. (1983). Qualitative Data Analysis for Educational Research. A guide to uses of sistemic networks. Londres: Croom Helm.
Carr, M. (1996). Interviews About Instances and Interviews About Events. En: D.F. Treagust, R. Duit y B. Fraser (Eds.) Improving Teaching and Learning in Science and Mathematics. New York and London: Teacher College Press, pp. 44-53.
Candela, A. (2001). Modos de representación y géneros en clase de ciencias. Investigación en la Escuela, 45, 45-55.
Canedo-Ibarra, S. P. (2009). Contribución al estudio de los procesos de aprendizaje de las ciencias experimentales en Educación Infantil. Cambio conceptual y construcción de modelos científicos precursores. Tesis Doctoral. Disponible en: http://www.tesisenxarxa.net/TDX-0519109-114521/
Chinn, C.A. (1998). A Critique of Social Constructivist Explantions of Knowledge Change. En: B. Guzzetti y C. Hynd (Eds.) Perspectives on Conceptual Change. Multiple Ways to Understand Knowing and Learning in a Complex World. New York-London: Lawrence Erlbaum Associates Publishers, pp. 77-132.
Clement, J. (2000). Model based learning as a key area for science education. International Journal of Science Education, 22 (9), 1041-1053.
Coll, R. (2005). The role of models and analogies in science education: implications from research. International Journal of Science Education, 27 (2), 183-198.
Driver, R., Asoko, H., Leach, J., Mortimer, E. y Scott, P. (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23 (7), 5-12.
Driver, R., Newton, P. y Osborne, J. (2000). Establishing the Norms of Scientific Argumentation in Classrooms. Science Education, 84 (3), 287-312.
Duschl, R. y Osborne, J. (2002). Supporting and Promoting Argumentation Discourse in Science Education. Studies in Science Education, 38, 39-72.
Erickson, F. (1998). Qualitative Research Methods for Science Education. En: B.J. Fraser y K.G. Tobin (Eds.) International Handbook of Science Education. Part II. London: Kluver Academic Publishers, pp.1155-1173.
Fisher, E. (1993). Distinctive features of pupil–pupil classroom talk and their relationship to learning: How discursive exploration might be encouraged. Language and Education, 7 (4), 239–257.
Fraenkel, J.R. y Wallen, N. (2003). How to Design and Evaluate Research in Education. Fifth Edition. New York: McGraw-Hill.
Harlen, W. (1998). Enseñanza y aprendizaje de las ciencias. Madrid: Morata.
Havu-Nuutinen, S. (2000). Changes in Children´s Conceptions through Social Interaction in Pre-school Science Education. Publications in Educations No. 60. University of Joensuu.
Havu-Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27 (3), 259-279.
Koliopoulus, D., Tantaros, S., Papandreou, M. y Ravanis, K. (2004). Preschool children’s ideas about floating: a qualitative approach. Journal of Science Education, 5 (1), 21-24.
Kuhn, D. (1993). Science as Argument: Implications for Teaching and Learning Scientific Thinking. Science Education, 7 (3), 319-337.
Lemeignan, G. y Weil-Barrais, A. (1993). Construire des Concepts en Physique. L’enseignement de la mécanique. Paris: Hachette.
Lemke, J. (1990). Talking Science. Science, Language, Learning and Values. Norwood, NJ: Ablex Publishers.
Mercer, N. (1996). The Quality of Talk in Children Collaborative Activity in the Classroom. Learning and Instruction, 4 (6), 359-377.
Mercer, N., Wegerif, R., y Dawes, L. (1999). Children’s talk and the development of reasoning in the classroom. British Educational Research Journal, 25 (1), 95-111.
Mercer, N., Dawes, L., Wegerif, R. y Sams, C. (2004). Reasoning as a scientist: ways of helping children to use language to learn science. British Educational Research Journal, 3 (30), 359-377.
Merrian, S.R. (1998). Qualitative Research and Case Study Applications in Education. Second Edition. San Francisco: Jossey-Bass Publishers.
Metz, K. (2000). Young children’s inquiry in Biology: Building the knowledge bases to empower independent inquiry. En: J. Minstrell & E. H. van Zee (Eds.) Inquiry into Inquiry. Learning and Teaching Science. Washington, D.C: American Association for the Advancement of Science, pp. 371-404.
Metz, K.E. (2004). Children’s understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition & Instruction, 22 (2), 219 – 290.
Phillips, T. (1992). Why? The neglected question in planning small group activity. En: K. Norman (Ed.) Thinking voices: The work of the National Oracy Project. London: Hodder and Stoughton, pp. 148-155.
Rafal, T.C. (1996). From co-construction to takeovers: Science talk in a group of four girls. The Journal of the Learning Sciences, 5 (3), 279-293.
Ravanis, K. (2000). La construction de la connaissance physique à l’age préscolaire: recherches sur les interventions et les interactions didactiques. Aster, 31, 71-94.
Ravanis, K. y Bagakis, G. (1998). Science Education in Kindergarten: Sociocognitive perspective. International Journal of Early Years Education, 6 (3), 315-327.
Rojas-Drummond, S. y Mercer, W. (2003). Scaffolding the development of effective collaboration and learning. International Journal of Educational Research, 39 (1-2), 99-111.
Rojas-Drummond, S., Pérez, V., Vélez, M., Gómez, L. y Mendoza, A. (2003). Talking for reasoning among Mexican primary school children. Learning and Instruction, 13, 653-670.
Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. En: M. Cole, V. John-Steiner, S. Scribner, y E. Souberman (Eds.). Cambridge, MA: Harvard University Press.
Wegerif, R., Mercer, N. y Dawes, L. (1999a). From social interaction to individual reasoning: an empirical investigation of a possible socio-cultural model of cognitive development. Learning and Instruction, 9 (6), 493-516.
Wegerif, R., Mercer, N. y Rojas-Drummond. (1999b). Language for the social construction of knowledge. Language and Education, 13 (2), 134-150.
Weil-Barais, A. (1997). De la recherche sur la modélisation physique á la formation des professeurs de physique: comment s’opère la transition? Skole, 7, 141-155.
Weil-Barais, A. (2001). Los constructivismos y la Didáctica de las Ciencias. Perspectivas, XXXI (2), 197-207.
Wertsch, J.V. y Toma, C. (1995). Discourse and learning in the classroom: A sociocultural approach. En: L.P. Steffe y J. Gale. (Eds.) Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum, pp. 159-184.
Downloads
Published
How to Cite
Issue
Section
License
Authors keep authorship rights and confer to REIRE the rights of article’s first publication.
All the contents included into REIRE Revista d’innovació i Recerca en Educació are under Creative Commons 4.0 International license attribution, which allows the article’s reproduction, distribution and public communication, whenever authorship and the journal’s title is quoted.