Substàncies complexes, canvis d'estat i llindar de comprensió del model matèria a 2n d'ESO
Complex substances, changes of state and comprehension threshold of the model of matter in secondary school
DOI:
https://doi.org/10.1344/did.2021.9.120-138Keywords:
modeling, model of matter, physics and chemistry, changes of state, mixturesAbstract
This research aims to study the influence of two instructional sequences oriented to the understanding of the model of matter. These sequences have been implemented in an 8th grade science course in a public secondary school in Catalonia. The first sequence addresses the changes of state between solids, liquids and gases. The second addresses the differences between pure substances and mixtures. They both follow the modeling cycle, in which students express, evaluate, review and apply their mental models about the internal structure of the matter. We collected the explanations of 49 students in two different moments of the sequences by asking them about which changes of state occurs when mud and paint become dry. We analyze if students can overcome the comprehension threshold necessary to explain these changes of state. The results show a positive effect in those students with an intermediate scientific competence level, but no influence in those students with a lower scientific competence level. Based on these results, we discuss the role of modeling activities as an educational strategy, and we point out some educational implications to enhance students’ learning process
References
Achér, A., Arcà, M., i Sanmartí, N. (2007). Modelling as a teacher learning process for understanding materials: A case study in primary education. Science Education, 91(1), 398–418.
Achér, A., i Reiser, B. J. (2010). Middle school students and teachers making sense of the modeling practice in their classrooms. En Annual conference of the National Association for Research in Science Teaching (NARST). Philadelphia, PA.
Aliberas, J., Izquierdo, M., i Gutierrez, R. (2013). El papel de la conversación didáctica en la modelización y progresión del conocimiento escolar: el caso de la hidrostática en ESO. En IX Congreso Internacional sobre Investigación en Didáctica de las Ciencias (pp. 76–83)
Baek, H., Schwarz, C., Chen, J., Hokayem, H., i Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS 5th grade approach and findings. En M. S. Khine i I. M. Saleh (Eds.), Models and modeling. Cognitive tools for science enquiry (pp. 195-218). Dordrecht: Springer.
Clement, J. J. (2008). Student/Teacher co-construction of visualizable models in large group discussion. En J. J. Clement i M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 11–22). Dordrecht: Springer.
Couso, D., i Garrido-Espeja, A. (2017). Models and modelling in pre-service teacher education: Why we need both. En K. Hahl, K. Juuti, J. Lampiselkä, A. Uitto i J. Lavonen (Eds.), Cognitive and affective aspects in science education research. Selected Papers from the ESERA 2015 Conference (pp. 245–261). Dordrecht: Springer.
Crujeiras, B., i Jiménez-Aleixandre, M. P. (2012). Participar en las prácticas científicas. Alambique, 72, 12–19.
Décamp, N., i Viennot, L. (2015). Co-development of conceptual understanding and critical attitude: Analyzing texts on radiocarbon dating. International Journal of Science Education, 37(12), 2038-2063.
Departament d’Ensenyament (2016). Competències bàsiques de l’àmbit cientificotecnològic. Identificació i desplegament de l’educació secundària obligatòria. Generalitat de Catalunya.
DECRET 187/2015 (2015), de 25 d'agost, d'Ordenació dels ensenyaments de l'educació secundària obligatòria. Departament d’Ensenyament. CVE-DOGC-A-15237051-2015.
Dove, J. (1998). Alternative conceptions about weather. School Science Review, 79(289), 65-69.
Garrido-Espeja, A. (2016). Modelització i models en la formació inicial de mestres de primària des de la perspectiva de la pràctica científica. Universitat Autònoma de Barcelona.
Harlen, W. (2010). Principles and big ideas of science education. Gosport, Hants, UK: Association for Science Education.
Hernández, M. I., Couso, D., i Pintó, R. (2015). Analyzing students’ learning progressions throughout a teaching sequence on acoustic properties of materials with a model-based inquiry approach. Journal of Science Education and Technology, 24(2-3), 356–377.
Izquierdo, M. (2014). Los modelos teóricos en la enseñanza de las «ciencias para todos» (ESO, nivel secundario). Biografia, 7(13), 69–85.
Izquierdo, M., Espinet, M., García, M. P., Pujol, R. M., i Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, núm extra, 79-91.
Izquierdo, M. (2013). School chemistry: A historical and philosophical approach. Science and Education, 22(7), 1633–1653.
Jorba, J., i Sanmartí, N. (1996). Enseñar, aprender y evaluar: un proceso de regulación continua: Propuestas didácticas para las áreas de ciencias de la naturaleza y matemáticas. Madrid: CIDE-MEC.
Kelly, G. J. (2013). Inquiry teaching and learning: Philosophical considerations. En Michael R. Matthews (Ed.), Handbook of historical and philosophical studies in science education (pp. 1363-1380). Pennsylvania State University: Springer.
Kelly, G. J., i Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883–915.
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(1), 877–905.
López, V., Couso, D., Garrido, A., Grimalt-Alvaro, C., Simarro, C., Hernández, M. I., i Pintó, R. (2017). El papel de las TIC en la enseñanza de las ciencias en secundaria desde la perspectiva de la práctica científica. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 691-698.
Louca, L. T., i Zacharia, Z. C. (2015). Examining learning through modeling in K-6 science education. Journal of Science Education and Technology, 24(2-3), 192–215.
Mans, C. (2018). La química en la cocina. Una inmersión rápida. Barcelona: Tibidabo Ediciones.
Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. En P. Carruthers, S. Stich, i M. Siegal (Eds.), The cognitive basis of science (pp. 133–153). Cambridge: Cambridge University Press.
NRC. (2012). A framework for K-12 science education. practices, crosscutting concepts and core ideas. Washington, D.C.: The National Academies Press.
Ogborn, J. (2012). Curriculum development in physics: Not quite so fast! Scientia in Educatione, 3(2), 3–15.
Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196.
Osborne, R. J., i Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
Sanmartí, N. (2002). Didáctica de las ciencias en la educación secundaria obligatoria. Madrid: Síntesis Educación.
Schwarz, C. V., Reiser, B. J., Davis, E. a., Kenyon, L., Achér, A., Fortus, D., … Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.
Smith, C. L., Wiser, M., Anderson, C. W., i Krajcik, J. (2006). Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research & Perspective, 4(1-2), 1–98.
Smith, C. L., Wiser, M., i Carraher, D. W. (2010). Using a comparative, longitudinal study with upper elementary school students to test some assumptions of a learning progression for matter. Comunicació presentada a National Association for Research on Science Teaching. Philadelphia, PA.
Soto, M., Couso, D., López, V., i Hernández, M. I. (2017). Promoviendo la apropiación del modelo de energía en estudiantes de 4º de ESO a través del diseño didáctico. Ápice: Revista de Educación Científica, 1(1), 90-106.
Stevens, S. Y., Delgado, C., i Krajcik, J. S. (2009). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715.
Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of «structure of matter.» International Journal of Science Education, 31(15), 2123–2136.
Viennot, L. (2002). Razonar en física: la contribución al sentido común. Madrid: Antonio Machado.
Viennot, L., i Décamp, N. (2016). Conceptual and critical development in student teachers: First steps towards an integrated comprehension of osmosis. International Journal of Science Education, 38(14), 2197-2219.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Víctor López Simó
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication.
- Submitting a paper does not involve paying any fees.
- Texts will be published under a Creative Commons Attribution Share-Alike 4.0 International License that allows others to share the work, provided they include an acknowledgement of the work’s authorship, its initial publication in this journal and the terms of the license.
- When citing works published in Didacticae, both the autor and the journal must be cited.
- Didacticae does not accept any responsibility for the points of view and statements made by the authors.