Recontextualizaciones y ensamblajes: ABP y matemáticas universitarias

Recontextualizations and assemblages: PBL and maths at University

Authors

DOI:

https://doi.org/10.1344/did.2017.1.4-25

Keywords:

problem based learning, PBL, technological mediation, modelling

Abstract

A common problem in university mathematics education is the gap between formalism and abstraction and how these two are applied in a specific context, for example, in engineering. The competencies gained through learning in a PBL environment, such as the one found at Aalborg University in Denmark, cast light on how to bridge such gap. We analyse, in depth, two first year engineering students’ final project reports where mathematical tools are recontextualized and assembled in tackling complex interdisciplinary problems. The description and analysis of these cases allow us to illustrate the competencies that students gain when working on this type of project. We intend to show how students’ activity in this environment offers possibilities that go beyond the classic divide between formal learning and application.

References

Abdulwahed, M., Jaworksi, B., y Crawford, A. R. (2012). Innovative approaches to teaching mathematics in higher education: A review and critique. Nordic Studies in Mathematics Education, 17(2), 49-68.

Barrows, H. S. (1986). A taxonomy of problem-based learning methods. Medical Education, 20(6), 481-486.

Beach, K. (1999). Consequential transitions: A sociocultural expedition beyond transfer in education. Review of Research in Education, 24, 101-139.

Bingolbali, E., y Monaghan, J. (2008). Cognition and institutional setting. En A. Watson y P. Winbourne (Eds.), New directions for situated cognition in mathematics education, Vol. 45, 233-259. Springer US.

Dahl, B., y Kolmos, A. (2015). Students’ attitudes towards group based project exams in two en-gineering programmes. Journal of Problem Based Learning in Higher Education, 3(2), 62-79.

Flyvbjerg, B. (2001). Making social science matter: why social inquiry fails and how it can succeed again. Oxford, UK; New York: Cambridge University Press.

Hernández, C., Ravn, O., y Valero, P. (2015). The Aalborg University PO-PBL model from a socio-cultural learning perspective. Journal of Problem Based Learning in Higher Education, 3(2), 16-36.

Knijnik, G. (2012). Differentially positioned language games: ethnomathematics from a philosophical perspective. Educational Studies in Mathematics, 80(1), 87-100.

Kolmos, A. (2008). Problem-based and project-based learning. En O. Skovsmose, P. Valero y O. R.Christensen (Eds.), University science and mathematics education in transition, 261-280.New York: Springer.

Kolmos, A., Fink, F. K., y Krogh, L. (2004). The Aalborg PBL model. Aalborg: Aalborg University Press.

Krogh, L., y Jensen, A. A. (Eds.). (2013). Visions, challenges and strategies: PBL principles and methodologies in a Danish and global perspective. Aalborg: Aalborg University Press.

Latour, B. (1994). On technical mediation. Philosophy, sociology, genealogy. Common Knowledge, 3(2), 29-64.

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and challenges for future research. Journal of the Learning Sciences, 15(4), 431-449.

Niss, M. (2002). University mathematics based on problem-oriented student projects: 25 years of experience with the Roskilde Model. En D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss y A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level, Vol. 7, 153-165: Springer Netherlands.

Renshaw, E. (1991). Modelling biological populations in space and time. Cambridge; New York: Cambridge University Press.

Roth, W.-M. (2008). The gap between university and the workplace: Examples from graphing in science. En O. Skovsmose, P. Valero y O. R. Christensen (Eds.), University science and mathematics education in transition (p.133-155). New York: Springer.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. En D. A. Grouws (Ed.), Handbook of research on Mathematics teaching and learning (p. 334-369). New York: Macmillan.

VV.AA. (2005). Fugleinfluenza [Gripe aviaria]. Aalborg: Basisår. Det teknisk-naturvidenskabeligFakultet. Aalborg Universitet.

VV.AA. (2007). Rangordning af søgeresultater [Jerarquía de resultados de búsqueda]. Aalborg: Basisår. Det teknisk-naturvidenskabelig Fakultet. Aalborg Universitet.

Vithal, R., Christiansen, I. M., y Skovsmose, O. (1995). Project work in university mathematics education. A Danish experience: Aalborg University. Educational Studies in Mathematics 29(2), 1999-223.

Vithal, R., y Valero, P. (2003). Researching mathematics education in situations of social and political conflict. En A. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick y F. K. S. Leung (Eds.), Second International Handbook of Mathematics Education (Vol. 2, p. 545-592. Dordrecht: Kluwer. Wittgenstein, L. (1997). Philosophical investigations. Oxford: Blackwell Publishers.

Published

2021-08-31

Issue

Section

Monographic section